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We experimentally observe the shear and secondary compression waves inside soft porous water-
saturated melamine foams by high-frame-rate ultrasound imaging. Both wave speeds are supported by the
weak frame of the foam. The first and second compression waves show opposite polarity, as predicted by
Biot theory. Our experiments have direct implications for medical imaging: melamine foams exhibit a
similar microstructure as lung tissue. In the future, combined shear wave and slow compression wave
imaging might provide new means of distinguishing malignant and healthy pulmonary tissue.
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The characterization of wave propagation in porous
materials has a wide range of applications in various fields
at different scales. In contrast to classical elastic materials,
poroelastic materials support three types of elastic waves
and exhibit a distinctive dispersion in the presence of
viscous fluids [1–3]. The first thorough theoretical descrip-
tion of poroelasticity that included dispersion was
developed by Biot [1,4]. He predicted a secondary com-
pressional wave (PII wave), which is often named Biot
slow wave. His theory was soon applied in geophysics on a
large scale for hydrocarbon exploration [5]. It was later
extended to laboratory scale for bone and lung characteri-
zation through numerical modeling and medical imaging
[6–11]. While poroelastic models have been used to
characterize materials and fabrics such as textiles [12],
anisotropic composites [13], snow [14], and sound absorb-
ing materials [15], experimental detection of the PII wave
remains scarce [2,16]. In medical imaging, the characteri-
zation of the porous lung surface wave has only recently
been emphasized [17–20]. Experimental detection of
poroelastic waves is difficult due to their strong attenuation
and the diffuse PII wave behavior below a critical fre-
quency [1,16,21]. We overcome this challenge by using
in situ measurements from medical imaging. We apply a
high-frame-rate (ultrafast) ultrasound for wave tracking
[22], the technique underlying transient elastography
[22–25], on saturated, highly porous melamine foams.
A very dense grid of virtual receivers is placed inside
the sample through correlation of backscattered ultrasound
images, reconstructing the particle velocity field of elastic
waves. The resolution is thus only determined by the
wavelength of the tracking ultrasound waves, which is
several orders of magnitude lower than the wavelength of
the tracked low-frequency waves [25,26]. Two factors
allow us thusly to visualize the propagation of shear (S)
and PII waves and measure phase speed and attenuation,

which, to the best of our knowledge, has not been done
before. First, simple scattering of ultrasound at the foam
matrix ensures the reflection image. Second, the imaged
elastic waves propagate several times slower (<40 ms−1)
than the ultrasonic waves (≈1500 ms−1). The measured
low-frequency speeds are in agreement with a first approxi-
mation that views the foam as a biphasic elastic medium.
To take solid-fluid coupling into account, we compare the
measured speeds and attenuations with the analytic results
of Biot’s theory. The S wave results show a good quanti-
tative prediction, while the PII wave speeds show a
qualitative agreement. Melamine foams have already been
used to simulate the acoustoelastic properties of pulmonary
tissue due to their common highly porous, soft structure
[3,19,27]. We thus postulate that our results have possible
future implications for lung characterization by ultrasound
imaging.
We use a rectangular Basotect® melamine resin foam of

dimensions x ¼ 30 cm, y ¼ 18 cm, z ¼ 12 cm, which is
fully immersed in water to ensure complete saturation.
The foam exhibits a porosity between 96.7 and 99.7%,
a tortuosity between 1 and 1.02, a permeability between
1.28 × 10−9 and 2.85 × 10−9 m2 and a density of
8.8 kgm−3 � 1 kgm−3. The viscous length σ is between
11.24 × 10−5 and 13.02 × 10−5 m, as indicated in the
microscopic photo at the top of Fig. 1. The foam parameters
were independently measured using the acoustic imped-
ance tube method [28] and a Johnson-Champoux-Allard-
Lafarge model [7,8,28,29]. These measurements serve as
input to the analytic Biot model. Figure 1 shows the setups
for the S wave (a) and PII wave (b) experiments. A piston
(ModalShop Inc. K2004E01), displayed at the top, excites
the waves. In Fig. 1(a), a rigid metal rod which is pierced
through the sponge ensures rod-foam coupling, as well
as transverse polarization (uz) of the wave. Excitation is
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achieved in two ways. First, through a pulse and, second,
through a frequency sweep from 60 to 650 Hz. The excited
S wave propagates along the x dimension (kx) exposing
a slight angle due to imperfect alignment of the rod. In
Fig. 1(b), a rigid plastic plate at the end of a rod excites the
compression wave on the upper foam surface and ensures
longitudinal polarization. The induced vibration is a
Heaviside step function. We undertake three experiments
with different excitation amplitudes. In both setups, particle
and rod motion are along the z dimension. The imaging
device is a 128-element L7-4 (Philips) ultrasound probe
centered at 5 MHz. Figure 1(c) schematically indicates the
probe position below the foam and the z polarization of the
ultrasonic waves. The probe is connected to an ultrafast
ultrasound scanner (Verasonics Vantage™) which works at
3000 (S wave) and 2000 (PII wave) frames per second.
Each frame is obtained through emission of plane waves as
in Ref. [22] and beamforming of the backscattered signals.
In order to visualize the wave propagation, we apply phase-
based motion estimation [30] on subsequent ultrasound
frames. Similar to Doppler ultrasound techniques, the
retrieved phase difference gives the relative displacement
on the micrometer scale. Due to the finite size of our
sample, reflections from the opposite boundary can occur.
Therefore, we apply a directional filter [31] in the kx −
ky − f domain of the full 2D wave field [32]. For setup 1(a)
(S wave) the filter effect is negligible, but for setup 1(b)
(P wave), a reflection at the boundary opposite of the
excitation plate is attenuated (see the Supplemental
Material [33]). The resulting relative displacement for
setup 1(b) is a superposition of the primary compression
wave (PI) and the PII wave. Thus, we additionally apply a

spatial gradient in z direction to isolate the PII wave
displacement.
Three displacement snapshots of the S and PII wave are

shown in Fig. 2(a). The top row is an example of the wave
propagation induced by shear excitation as schematically
shown in Fig. 1(a). The blue color signifies particle motion
uz towards the probe. A comparison of the wave fields
shows that the plane wave front propagates in the positive
x direction (kx). The bottom row displays the PII wave for
6, 7, and 8 ms. It is excited at the top and propagates with
decreasing amplitude in positive z direction (kz). A sum-
mation along the z dimension for the transverse setup, and
along the x dimension for the longitudinal setup, result in
the space-time representations of Fig. 2(b). They show, that
the S and PII wave are propagating over the whole length at
near constant speed. The PII wave (PII) is well separated
and of opposite polarity from the direct arrival (PI) at
2.5 ms. A time-of-flight measurement through slope
fitting gives a group velocity of 14.7 ms−1 (S wave) and
14.4 ms−1 (PII wave). The central frequency is approx-
imately 220 Hz for the S wave, and 120 Hz for the PII
wave. These values suggest that both speed are governed by
the low elastic modulus of the foam. The simplest porous
foam model is an uncoupled biphasic medium with a weak
frame supporting the S and PII wave. In this case, the PI
wave is supported by an incompressible fluid, which
circulates freely through the open pores. The porous
compressibility is that of the foam matrix, and its first
Lamé parameter λ0 is very small compared to the shear
modulus μ0. Hence, the compression wave speeds vp1;2
become:

(a)

(c)

(b)

FIG. 1. Schematic experimental setups of the S wave (a) and PII
wave excitation (b). Blue arrows signify the polarization of
particle motion and red arrows the direction of wave propagation.
At the center top, a microscopic photo of the investigated
melamine foam is displayed. (c) Ultrafast ultrasound imaging
principle: The particle velocity maps are retrieved through
correlation of subsequent ultrasound images.

(a) (b)

FIG. 2. Experimental wave fields for the setups in Fig. 1.
(a) Snapshots at three time steps of a propagating S wave pulse
(top) and PII wave step (bottom). The top row shows the particle
velocity and the bottom its z gradient. (b) Corresponding time-
space representation by summation orthogonal to x (top) and
z (bottom). In the top row, the S wave (S) and in the bottom row,
the first (PI) and secondary compression wave (PII) can be
identified. uz—Direction of particle motion. kx=z—Direction of
wave propagation. The displacement films and the unfiltered PII
wave snapshots are in Ref. [33].
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s
≈
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with λ0; μ0 and λf; μf being the first and second Lamé
parameters of the drained sponge and the fluid. ρ0 ¼
ρmineralð1 − ϕÞ is the density of the drained sponge, ρf
the fluid density, vs the S wave speed, and ϕ is porosity.
This approximation is in accordance with Ref. [34] who
investigated the quasistatic behavior of hydrogels. To
assess the dispersion of the observed waves, we apply a
fast Fourier transformation and recover the phase velocity
and attenuation from the imaginary and real part of the
complex signal. For the S wave, we use a frequency sweep.
For the PII wave, reflections from the boundaries and mode
conversions prohibit the exploitation of a chirp, hence we
use the Heaviside displayed in Fig. 2. Its −10 dB band-
width is limited from 50 to 150 Hz. The phase velocity is
directly deduced from a linear fit of the phase value along
the propagation dimension. We use a RANSAC algorithm
[35] and display values with a R2 of 0.98 and minimum
70% inliers. The speed measurements of the S and PII wave
in their shared frequency band are displayed in Fig. 3(a).
Both curves are monotonously increasing with frequency.
To verify Eq. (1) we use a sixth-order polynomial fit
(blue line) and its 95% confidence interval as input data.
The resulting PII wave speeds (black line) and its 95%
confidence interval (gray zone) show that the PII wave
experimental data lie within the prediction of Eq. (1),
with a ratio of approximately

ffiffiffi
2

p
with the S wave speeds.

Figure 3(b) shows the entire frequency range of the
measured S wave speeds.
The elastic model for Eq. (1) cannot account for viscous

dissipation. Consequently, we compare the measured
dispersion with a second approach, the Biot theory [1].
This theory uses continuum mechanics to model a solid
matrix saturated by a viscous fluid. The Biot dispersion and
PII wave result from the coupling of fluid and solid
displacement [1,4,6,36–40]. One drawback is that the
theory requires nine parameters. We reduced the degrees
of freedom to two by fixing the porous parameters to the
values measured by the acoustic impedance tube method in
air: ϕ ¼ 0.99%, α∞ ¼ 1.02, k0 ¼ 12.76 × 10−10 m2,
ρ ¼ 8.8 kgm−3 � 1 kgm−3, the Biot-Willis coefficient
equals the porosity ϕ, and the fluid parameters to literature
values for water: Efl ¼ 2.15 × 109 kPa (fluid Young’s
modulus) and fluid viscosity ηf ¼ 1.3 × 10−3 Pa s. We
optimize the two remaining elastic parameters within
literature values of 0.276 to 0.44 for Poisson’s ratio and
30 to 400 kPa for Young’s modulus [6,15,41–43]. To avoid
local minima, we first run a parameter sweep in the

literature bounds and use the best fit as input to an
unconstrained least squares optimization, described in
Ref. [44]. The resulting Poisson’s ratio is 0.39 and the
Young’s modulus 303 kPa. However, it should be noted that
the optimization is not very sensitive to the Poisson’s ratio.
For example, a 10% increase in Poisson’s ratio, results in a
R2 of 0.998 between the optimal S wave solution and the
deviation. However, the PII wave is sensitive to the
Poisson’s ratio with a R2 of 0.783. In contrast, both waves
exhibit a similar sensitivity with a R2 of 0.975 (S wave) and
0.979 (PII wave) for a 10% increase in Young’s modulus.
For a detailed sensitivity analysis see Ref. [33]. The
analytic S wave curve resulting from the minimization
is displayed in Fig. 3(b). It shows good agreement
(R2 ¼ 0.808) with the experimental values between 120
and 600 Hz. Below this frequency, wave guiding, present if
the wavelength exceeds the dimension of particle motion
[45], and not taken into account by Biot’s infinite medium,
might lower the measured speeds. Biot’s model over-
estimates the experimental PII speeds, but exhibits the same
trend. Furthermore, it predicts that the PII displacements

(a)

(b)

FIG. 3. Experimental and theoretical dispersion. (a) Experimen-
tal S wave (blue dots) and PII wave (red circles) speeds. A sixth-
order polynomial fit (blue solid line) of the full frequency band
and its 95% confidence interval give vs for Eq. (1). The resulting
PII wave speeds (black solid line) and its 95% confidence interval
(gray zone) are displayed. The PII wave results are the average of
three experiments with the maximum deviation indicated by the
error bars. (b) Experimental S wave (blue dots) and analytic Biot
S (blue line) and PII wave (red dashed line).
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of the solid and fluid constituent are of opposite sign while
they are phase locked for the PIwave [1,46]. This leads the PI
andPII arrivals to be out of phase [47,48],which is confirmed
by the time-space representation of Fig. 2(b). Ultrasound
imaging measures the solid displacement only, hence the
displacement of PI (blue) and PII (red) is out-of-phase.
The phase opposition [47] and the measured positive PII
dispersion are strong arguments to exclude the presence of
a bar wave (S0 mode). It should be pointed out that there
is a crucial difference between previous interpretations of
the PII wave [2,47,48] and this study. In geophysics and bone
characterization, the PII wave travels close to the fluid sound
speed and the PI wave close to the sound speed of the rigid
skeleton. In contrast to that, our results indicate that the
PII wave speed is governed by the weak frame of the foam
and the PI wave propagates at the speed of sound in water.
An equivalent interpretation was given by Ref. [16] for
experiments in porous granular media [49].
To verify the dispersion results we compare them to

attenuation, which for plane waves is described by [26]:

Aðxþ ΔxÞ ¼ AðxÞe−αðωÞΔx ð2Þ

where ω is angular frequency, αðωÞ is attenuation co-
efficient, A is amplitude, and x is measurement direction.
The top left inset in Fig. 4 shows the logarithmic amplitude
decrease with distance at one frequency of the S wave.
The bottom right inset shows the decrease at the central
frequency of the PII wave. The difference between these
experimental curves and the expected linear decrease
reflects the difficulties to conduct attenuation measurement
by ultrafast ultrasound imaging [26].We apply a logarithmic
fit of the amplitude with distance to retrieve the attenuation
coefficient at each frequency, using the RANSAC algorithm

described earlier. The resulting attenuation, displayed in
Fig. 4, monotonously increases with frequency.
Attenuation and velocity of plane waves can be related

through the bidirectional Kramers-Kronig (KK) relations.
They relate the real and imaginary part of any complex
causal response function [50], which we use to verify our
experimental results. While the original relations are
integral functions that require a signal of infinite band-
width, Refs. [51–53] developed a derivative form that is
applicable on bandlimited data and has previously been
applied by Ref. [54] on S wave dispersion. Following
Refs. [26,55], the attenuation in complex media is observed
to follow a frequency power law:

αðωÞ ¼ α0 þ α1ω
y ð3Þ

and can be related to velocity by [52,53]:

1

cðωÞ−
1

cðω0Þ
¼
�
α1 tanðπ2yÞðωy−1−ωy−1

0 Þ; 0≤ y≤ 2

−2
π α1 ln

ω
ω0
; y¼ 1;

ð4Þ

where ω0 is a reference frequency, α1 and y are fitting
parameters and α0 is an offset, typically observed in soft
tissues [54,56]. Since velocity measurements by ultrafast
ultrasound imaging are less error prone than attenuation
measurements [26], we use Eq. (4) to predict attenuation
from velocity. A least squares fit gives the exponent y and
the attenuation constant α1 that minimizes Eq. (4) for
different reference frequencies. The resulting attenuation
model is αðωÞ ¼ 21 × ω0.29 Npm−1, with a reference
frequency of 413 Hz and a R2 larger 0.98 for frequencies
between 120 and 650 Hz. The attenuation exponent y ¼
0.29 is an expected value for S waves in biological tissues
[55,57]. The KK relations do not take into account the
offset α0. It is introduced by minimizing the least squares of
Eq. (3) and the attenuation measurements. The resulting
attenuation curve with α0 ¼ −119 Npm−1 is displayed
in Fig. 4. It shows a significant agreement with the
attenuation measurements (R2 ¼ 0.9016) and Biot predic-
tions (R2 ¼ 0.9274). The successful KK prediction implies
that guided waves have little influence on our measure-
ments above 120 Hz. The remaining misfit might stem from
out-of-plane particle motion, which can introduce an error
on amplitude measures by ultrafast ultrasound imaging
[26]. Furthermore, the low-frequency elastic wave is
imaged in the near field, where it does not show a power
law amplitude decrease due to the coupling of transverse
and rotational particle motion [58]. The good agreement
between the experimental and theoretical S wave dispersion
and attenuation indicates that the observed S wave attenu-
ation is due to the interaction between the solid and the
viscous fluid. The PII wave attenuation of the three
experiments converges only at the central frequency of
120 Hz (≈16 Npm−1). Below this frequency, the measure-
ments are taken on less than two wavelengths of wave

FIG. 4. Attenuation measurements, KK and Biot predictions.
The insets show the exemplary amplitude decrease of the S wave
(left) and PII wave (right). Dots are attenuation measurements,
solid blue and dashed red lines are the Biot predictions, and the
dashed blue line is the S wave KK prediction for Eq. (3):
αðωÞ ¼ −119þ 21 × ω0.29 Npm−1.
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propagation, and consequently, the exponential amplitude
decrease cannot be ensured [58]. A reason for the failure of
the Biot theory to quantitatively predict the observed PII
wave dispersion could be viscoelasticity and anisotropy of
the foam matrix itself [42,59]. The Biot theory and the
model of Eq. (1) have different implications at low
frequencies. The Biot PII wave disappears, whereas it
persists as a decoupled frame-borne wave in Eq. (1). Our
velocity measurements support the decoupling hypothesis,
but measurements at lower frequencies would be needed to
make a definite statement.
In conclusion, we have showed the first direct observa-

tion of elastic wave propagation inside a poroelastic
medium. The recorded compression wave of the second
kind (PII wave) propagates at

ffiffiffi
2

p
times the shear wave

speed and is of opposite polarization compared to the first
compression wave (PI wave). Finally, the measured shear
wave dispersion (S wave) and attenuation are closely
related to the fluid viscosity. These results might have
important consequences in medical physics for character-
izing porous organs such as the lung or the liver.
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