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Topological magnetic textures have attracted considerable interest since they exhibit new properties and
might be useful in information technology. Magnetic hopfions are three-dimensional (3D) spatial variations
in the magnetization with a nontrivial Hopf index. We find that, in ferromagnetic materials, two types of
hopfions, Bloch-type and Néel-type hopfions, can be excited as metastable states in the presence of bulk
and interfacial Dzyaloshinskii-Moriya interactions, respectively. We further investigate how hopfions can
be driven by currents via spin-transfer torques (STTs) and spin-Hall torques (SHTs). Distinct from 2D
ferromagnetic skyrmions, hopfions have a vanishing gyrovector. Consequently, there are no undesirable
Hall effects. Néel-type hopfions move along the current direction via both STT and SHT, while Bloch-type
hopfions move either transverse to the current direction via SHTor parallel to the current direction via STT.
Our findings open the door to utilizing hopfions as information carriers.
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Topological solitons are of fundamental interest in non-
linear field theories. Additionally, their magnetic realiza-
tions are promising candidates as information carriers in the
next generation of data storage and processing devices
[1,2]. Low-dimensional topological solitonlike textures in
ferromagnetic (FM) and antiferromagnetic (AFM) materi-
als, such as 1D magnetic domain walls [3–6], 2D magnetic
vortices [7,8], and 2D magnetic skyrmions [9–17], have
been extensively studied in recent years.
The existence of 3D topological solitons with stringlike

properties has been proposed by Ludvig D. Faddeev [18] as
a limit of the Skyrme model [19]. These 3D topological
solitons are known as Faddeev-Hopf knots [20] or hopfions,
which are classified by a topological charge called the Hopf
index [21]. Hopfions have been discussed in many physical
systems, such as gauge theories [18,22], cosmic strings [23],
ferromagnets [24] (as a special case of dynamical vortex
rings), low-temperature bosonic systems [25–27], fluids
[28], and liquid crystals [29–31]. Recently, stable magnetic
hopfions were numerically predicted in finite-size noncen-
trosymmetric FM systemswith Dzyaloshinskii-Moriya inter-
action (DMI) [32,33] and interfacial perpendicular magnetic
anisotropy (PMA) [34–36] or higher-order exchange inter-
action [37]. However, 3D topological solitons such as
hopfions in magnetic systems are still underexplored com-
pared to well-studied 1D and 2D solitons.
In this Letter, we show that, in addition to interfacial

PMA, a bulk PMA assists in stabilizing a localized hopfion
that can exist in nanostrips in contrast to the boundary-
confined hopfions in nanodisks proposed in previous
studies [34,35]. In addition to the Bloch-type hopfions
studied previously [34–36], which can be stable in the
presence of bulk DMI [32,33,38], we identify another type

of hopfion, Néel-type hopfions, which can be stable in the
presence of interfacial DMI [39]. We also introduce an
ansatz that can accurately describe the hopfion profile. We
then study the current-driven dynamics of ferromagnetic
hopfions in nanostrips. Although the hopfions are topo-
logically nontrivial, their gyrovectors vanish. This is in
contrast to magnetic skyrmions, whose nontrivial topology
induces an unwanted “skyrmion Hall effect” [40–42] and
hinders the device applications [43–45]. As a result,
hopfions move along the current via spin-transfer torques
(STTs) [46]. Spin Hall torques (SHT) [47] also cause Néel-
type hopfions to move along the current, while Bloch-type
hopfions move transverse to the current. Hopfions may be
superior to skyrmions as information carriers in racetrack
memories since their current-induced motion is more
straightforward.
We consider a magnetic film of thickness d with

interfacial PMA at the top and bottom surfaces as well
as bulk PMA in the bulk. The zero-temperature micro-
magnetic free energy of the system reads

F ¼
Z
V
Aex

�
j∇mj2 þD

�
m;

∂m
∂xi

�
þ Kbð1 −m2

zÞ

þ BMsð1 −mzÞ
�
dV þ

Z
z¼�d=2

Ksð1 −m2
zÞdSþ Ed;

ð1Þ

where Aex is the exchange constant; D is the DMI energy
density functional, which depends on the symmetry of
the system; Kb and Ks are the bulk PMA and the inter-
facial PMA, respectively; B is a perpendicular magnetic
field; Ms is the saturation magnetization; and Ed is the
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demagnetization energy. In bulk noncentrosymmetric mate-
rials such as FeGe and MnSi, the DMI is bulklike
D ¼ Dbm · ð∇ ×mÞ, where Db is the bulk DMI strength
in units of J=m2 [10]. In inversion-symmetry-broken films
such as Pt=Co=AlOx, the DMI is interfacial-like
D ¼ Di½ðẑ ·mÞ∇ ·m − ðm · ∇Þðẑ ·mÞ�, where ẑ is the
direction normal to the film and Di is the interfacial DMI
strength in units of J=m2 [9,39]. Because the hopfions are
nonisomorphic maps from R3 ∪ f∞g to S2, the topological
invariant of hopfions, known as the Hopf index H, differs
from the skyrmion number. This index is defined as

H ¼ 1

ð4πÞ2
Z
V
F ·AdV; ð2Þ

where Fi ¼ εijkm·ð∂jm × ∂kmÞ=2, in which i; j; k ¼
fx; y; zg and ε is the Levi-Civita tensor, and A is a vector
potential, which satisfies ∇ ×A ¼ F [48]. The components
of F are solid angle densities in different coordinate planes.
F can be understood as the gyrovector density [49],
emergent magnetic field [50], or topological charge [10].
Figures 1(a) and 1(b) show the typical magnetization

profiles of Bloch-type and Néel-type hopfions,
respectively, obtained by numerical simulations. We
consider a 16-nm-thick film with Aex ¼ 0.16 pJm−1 and

Ms ¼ 1.51 × 105 Am−1, representing MnSi parameters
[34]. No external field is applied. The Bloch-type
(Néel-type) hopfions are favorable in bulk (interfacial)
DMI systems. In Fig. 1(a), we use Ks¼0.5mJm−2,
Kb ¼ 41 kJm−3, and Db ¼ 0.115 mJm−2, while in
Fig. 1(b), we use Ks ¼ 0.5 mJm−2, Kb ¼ 20 kJm−3,
and Di ¼ 0.115 mJm−2 (these parameters are also used
in the study of current-driven dynamics below). The
simulations are mainly performed using mumax3 [51] at
zero temperature (additional details of the simulations can
be found in the Supplemental Material [52]). We compute
that the Hopf indices are 0.96 (Bloch) and 0.95 (Néel) by
the numerical integration of Eq. (2) [52]. The two types of
hopfions are topologically equivalent but behave differently
in the presence of SHT, which we will discuss later. The
upper and lower panels are the midplane cross sections in
the xy plane and xz plane. The magnetization profile in
each xy midplane cross sections is Bloch-type (a) or Néel-
type (b) skyrmionium or the target skyrmion [57,58], while
the xz midplane cross section shows a pair of vortices with
opposite chirality. The right (x > 0) xzmidplane contains a
vortex (antivortex) with chirality þ1 (−1) for an H ¼ þ1
(H ¼ −1) hopfion. Outside the hopfions and at the center
of the hopfions, the magnetization is along the z direction,
and the donut-shape transition region is chiral (for Bloch-
type hopfions) or hedgehoglike (for Néel-type hopfions).
Figures 1(c) and 1(d) show the corresponding preimages
(constant-m curves in real space) of Figs. 1(a) and 1(b).
The preimages link with each other once, which is con-
sistent with the Hopf index calculation, justifying the
hopfion nature of the textures in (a) and (b).
Different from the hopfions observed in previous studies

[34–36] that are confined in small magnetic disks, the
introduction of a finite bulk PMA causes the hopfions in
our work to be metastable, localized objects that can exist
in long strips with a hopfion radius R, defined as the radius
of the preimage m ¼ ð0; 0;−1Þ. Thus, these hopfions can
be candidates of information carriers, and devices such
as hopfion racetrack memories can be designed [4,44].
Moreover, unlike skyrmions, although the topology of a
hopfion is nontrivial, the gyrovector G ¼ R

FdV of a
hopfion vanishes. Consequently, the main drawback of
a FM skyrmion racetrack memory, the skyrmion Hall
effect, is absent in the hopfion racetrack memory. In
addition to the numerical verification, the vanishing gyro-
vector of a hopfion can be understood as follows. Consider
a film that is isotropic in the xy plane. The hopfion profile
centered at a certain location can be expressed via
Θðr;ϕ; zÞ, Φðr;ϕ; zÞ, where ðr;ϕ; zÞ are cylindrical spatial
coordinates, and Θ,Φ are the polar and azimuthal angles of
the magnetization. Because of the isotropy in the xy plane,
it is natural to assume that Θ is independent of ϕ, and
Φðr;ϕ; zÞ ¼ ΔΦðr; zÞ þ nϕ, where n is an integer and ΔΦ
is a function independent of ϕ. These assumptions are well
justified by our numerical results. Thus, in cylindrical

(a) (b)

(c) (d)

FIG. 1. (a), (b) Midplane cross sections in the xy plane (upper
panel) and the xz plane (lower panel) of (a) a Bloch-type hopfion
and (b) a Néel-type hopfion. (c), (d) The preimages of
m ¼ ð0; 0;−1Þ, (1,0,0), and (0,1,0) for (c) a Bloch-type hopfion
and (d) a Néel-type hopfion. The tori are the isosurfaces of
mz ¼ 0. The colors of the arrows in (a) and (b) and the preimages
in (c) and (d) depict the full orientation of the corresponding m.
The color sphere and the coordinate system are shown in the
insets.
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coordinates, Fz ¼ nðsinΘ=rÞðdΘ=drÞ. We can rewrite
Gz ¼

R
FzdV as

Gz ¼
Z
V
Fzrdrdϕdz ¼ −2nπ

Z
d=2

−d=2
ðcosΘjr¼∞

r¼0 Þdz: ð3Þ

Since in a hopfion the magnetization directions are the
same at both the periphery (r ¼ ∞) and the center (r ¼ 0),
Gz vanishes. Since the two vortices in any xz (or yz)
midplane cross section have opposite chirality, as shown
in the lower panels of Figs. 1(a) and 1(b), the integration of
Fx (or Fy) over the volume gives a vanishing contribution
to Gx (or Gy). The components of G are invariant under
continuous deformation [10]; therefore, G ¼ 0 applies to
all the hopfions.
The magnetic hopfions discussed in previous studies

[34–36] were Bloch-like. In the following, we mainly
focus on Néel-type hopfions. Although the analytical
expression of the hopfion profile is unknown, we find
an ansatz that describes the H ¼ þ1 Néel-type hopfion
profile very well:

mx ¼
4r0½2z0 sinϕþ cosϕðr02 þ z02 þ 1Þ�

ð1þ r02 þ z02Þ2 ;

my ¼
4r0½−2z0 cosϕþ sinϕðr02 þ z02 þ 1Þ�

ð1þ r02 þ z02Þ2 ;

mz ¼ 1 −
8r02

ð1þ r02 þ z02Þ2 ; ð4Þ

where r0 ¼ ðeR=wR −1Þ=ðer=wR −1Þ, z0 ¼ ðz=jzjÞðejzj=wh −1Þ=
ðeh=wh −1Þ. R, wR, h, and wh are lengths parametrizing the
hopfion profile. R is the hopfion radius, defined from
mzðr ¼ R; z ¼ 0Þ ¼ −1. h is the hopfion height describing
the extent of the hopfion in the out-of-plane direction,
defined from mzðr ¼ R; z ¼ hÞ ¼ 1=9. wR and wh are
hopfion wall widths in the radial and out-of-plane directions,
respectively, describing the length scale of the magnetization
variation from mz ¼ þ1 to mz ¼ −1 [13]. The ansatz (4) is
based on the well-known ansatz [20] augmented by a
nonlinear rescaling of r and z [13] and can also describe
Bloch-type hopfions and H ¼ −1 hopfions after simple
transformations [52]. Figure 2(a)shows a comparison of mz
between the above ansatz and the numerical data along
the x direction for y ¼ z ¼ 0 (bottom axis) and along
the z direction for r ¼ R (top axis), with R ¼ 8.3 nm,
wR ¼ 5.6 nm, h ¼ 6.3 nm, and hw ¼ 1.6 nm obtained
from fitting. The comparison gives good agreement (more
comparisons can be found in the Supplemental Materials
[52]). The numerical data along the z direction are slightly
asymmetric with respect to z ¼ 0, which is because of the
asymmetric bulk magnetic charge. If the dipolar interaction
is turned off, or if the hopfion is a Bloch-type hopfion, this
asymmetry will vanish.
Next, we numerically calculate the Hopf indexH and the

layer-averaged gyrovector Gz=d by integrating over a

cylinder of height d and radius R0 (symbols), and we
compare the numerical results with the analytical result
calculated using the ansatz (4) (solid lines), as shown in
Fig. 2(b). As R0 increases,H converges toward 1, andGz=d
converges toward 0. Note that the R0 used here is smaller
than the sample size of our numerical simulation such that
the edge structures are discarded. Below, we use this ansatz
to discuss the current-driven dynamics of the hopfions, and
we compare the results with numerical simulations.
Disregarding deformations, the motion of a hopfion, as a

rigid body, is governed by Thiele’s equation [8,49]:

γ

Ms
TþG × ðv − uÞ −D

↔
· ðαv − βuÞ ¼ 0; ð5Þ

where γ is the gyromagnetic ratio; α is the Gilbert damping;
β is the STT nonadiabaticity [46]; v is the velocity of the
hopfion; u ¼ −μBpJ=½eMsð1þ β2Þ� is a vector with
dimension of velocity proportional to the current density
J, in which p is the spin polarization and e is the electron

charge; G is the above-mentioned gyrovector; and D
↔

is
the dissipation tensor defined as Dij ¼

R ∂im · ∂jmdV. T
is the force on the hopfion, expressed as Ti ¼
−ð∂ R FdV=∂XiÞ −

R ð∂m=∂xiÞ · ðm × τÞdV, where F is
the free-energy functional (1), Xi is the center position of
the hopfion, and τ represents nonconservative torques other
than STT such as the SHT. In our model, all the material
parameters are spatially homogeneous; therefore, the first
term in T is 0. Since G ¼ 0, the hopfions move along
the applied current via STT with velocity v ¼ ðβ=αÞu.
Figure 3(a) shows the trajectory during a period of 15 ns of
the Néel-type hopfion driven by STT under J¼1011Am−2,
with p¼0.12 (a typical value for Co [59]), α ¼ 0.05 and
β ¼ 0.1, obtained by numerically solving the Landau-
Lifshiz-Gilbert (LLG) equation [60] with STT [46,51].
The strip is 128-nm-wide in the y direction, and periodic

(a) (b)

FIG. 2. (a) The profile of mz of the hopfion shown in Fig. 1(a).
The bottom axis and black squares show the profile along the
radial direction at z ¼ 0. The top axis and red circles show
the profile along the z direction at r ¼ R. The solid lines are
the ansatz (4). (b). The dependence of the Hopf index H and
layer-averaged gyrovector component Gz=d on the integration
radius R0. The symbols are numerical results, and the solid lines
are obtained from the ansatz (4).
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boundary conditions are used in the x direction. The
trajectory is almost along the x direction after moving
for 15 ns. The small deviation may come from the
discretization and the deformation of the hopfion.
Figure 3(b)shows the longitudinal component of the
hopfion velocity vx vs the applied current density J.
The numerical data from LLG simulations (black squares)
are in good agreement with the analytical formula v ¼
ðβ=αÞu (black line). Above J ¼ 2 × 1011 Am−2, the hop-
fion becomes distorted, and at even higher currents
J ¼ 5 × 1011 Am−2, the hopfion is destroyed. In contrast
to the threshold current for the annihilation of FM sky-
rmions, this limitation on the current is not intrinsic and can
be improved by material engineering. For the Bloch-type
hopfion in Fig. 1(a), similar results are obtained.
Recently, spin-orbit torques (SOTs) have attracted atten-

tion for driving magnetic textures because of their possibly

higher angular momentum transfer efficiency [61]. SOTs
arise from a variety of origins such as interfacial Rashba
spin-orbit coupling [62], spin-Hall-effect-induced spin
currents from adjacent heavy metal layers [47], and the
intrinsic SOT in magnetic materials [63]. The fieldlike
component of the torque [62,63] can be regarded as a
uniform magnetic field on the system. Since a hopfion is a
localized object in a domain, a uniform magnetic field
deforms (or even destroys) the hopfion without exerting
a net force on it. We consider the anti-damping-like
SHT [47,64],

τ ¼ γℏ
eMsd

θSHm × ½m × ðĴ × ẑÞ�; ð6Þ

which is usually the dominant SOT for a heavy metal or
magnet system where θSH is the spin Hall angle. Consider a
current applied along the x direction. The SHT is then
τ ¼ τ0m × ðm × ŷÞ, where τ0 denotes the prefactors in (6).
Using the ansatz (4) with R, wR, h, and wh obtained by
fitting the numerical data, we can calculate the force T

and dissipation tensor D
↔
. According to the polarity of the

hopfion profile, the force on a Bloch-type hopfion is along
the y direction, while the force on a Néel-type hopfion is
along the x direction, similar to the skyrmion or target
skyrmion [41,57]. Thus, only Néel hopfions move along
the current under SHT, while the Bloch hopfions move
transverse to the current and are blocked by the edge of the

racetrack. Because of the isotropy in the xy plane, D
↔

is
diagonal, with Dxx ¼ Dyy ≡D. Thus, we have vx ¼
½T=ðαDÞ� for Néel hopfions. The trajectory of the Néel-
type hopfion during 15 ns driven by SHT under J ¼
1011 Am−2 and θSH ¼ 0.05 (a typical value for Pt [47])
obtained from the LLG simulation is shown in Fig. 3(c).
The damping is assumed to be α ¼ 0.05. The Néel hopfion
propagates along the wire. The longitudinal velocity
component vx under different current densities is plotted
in Fig. 3(b) by red circles. The analytical formula (red line)
agrees well with the numerical data. Note that the values of
T and D depend on the hopfion profile. Since the ansatz
introduced gives very good agreement with the numerical
results, it may be useful in other investigations on hopfions.
Note that hopfions can also be stabilized in AFM

systems, where the staggered Néel field forms a hopfion
profile [52,65].
The Néel-type hopfions should be realizable in experi-

ments [52,66–69]. In device application, a hopfion can
be created by applying a spin-polarized current or a
localized magnetic field through a ring-shaped nanocontact
[11,14,15,52,57,70]. A strong out-of-plane magnetic field
can eliminate a hopfion. The creation and elimination of
hopfions will be studied in detail in future. Since the
hopfions have finite magnetic moment, any existing tech-
niques that can detect local magnetic moment are also

(a)

(b)

(c)

FIG. 3. (a) Trajectory of Néel hopfion driven by STT during a
period of 15 ns. The midplane cross section of m in the xy plane
is shown. (b) Current density J dependence of the longitudinal
velocity vx of the Néel hopfion. The black squares (red circles)
are numerical results for STT-driven (SHT-driven) motion. The
solid lines are theoretical predictions. (c) Trajectory of Néel
hopfion driven by SHT during 15 ns. The midplane cross section
ofm in the xy plane is shown. The color map of (a) and (c) is the
same as in Fig. 1.
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capable to detect hopfions [34,71,72]. The hopfions that we
found remain geometrically confined by the thickness of
the film with the help of strong PMA. Indeed, in the
presence of DMI, Derrick’s theorem [73], which prohibits
the existence of 3D solitons in infinite conventional (non-
chiral) magnets, is no longer valid [74]. Whether it is
possible to stabilize hopfions in 3D chiral magnets without
confinement is still an open question for further inves-
tigations. Our study also implies that magnetic systems
represent a fertile playground for research on nonlinear 3D
topological solitons.
In conclusion, we identified a new type of hopfion, the

Néel-type hopfion, and studied the current-driven dynamics
of hopfions. In FM systems, despite the nontrivial topology,
neither Bloch- nor Néel-type hopfions exhibit Hall effects
and propagate along external currents via spin transfer
torque. The SHT only drives the Néel-type hopfions to
move along the current. Hopfions have the potential to be
efficient information carriers.
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