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We study the spin-1 XY model on a hypercubic lattice in d dimensions and show that this well-known
nonintegrable model hosts an extensive set of anomalous finite-energy-density eigenstates with remarkable
properties. Namely, they exhibit subextensive entanglement entropy and spatiotemporal long-range order,
both believed to be impossible in typical highly excited eigenstates of nonintegrable quantum many-body
systems. While generic initial states are expected to thermalize, we show analytically that the eigenstates
we construct lead to weak ergodicity breaking in the form of persistent oscillations of local observables
following certain quantum quenches—in other words, these eigenstates provide an archetypal example of
so-called quantum many-body scars. This Letter opens the door to the analytical study of the microscopic
origin, dynamical signatures, and stability of such phenomena.
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Introduction.—Quantum ergodicity is a fundamental
concept explaining how unitary quantum evolution can
lead to an equilibrium state described by statistical mechan-
ics. While the eigenstate thermalization hypothesis (ETH)
[1–4] posits that generic closed quantum many-body
systems exhibit ergodicity, there are important exceptions
to this paradigm, including many-body localized systems
[5], integrable systems [6] (which are nongeneric), dipole-
conserving theories [7–9], and a relatively new class of
weakly nonergodic systems exhibiting quantum many-
body scars (QMBS) [10–19].
Ergodicity breaking in such systemscanoften beattributed

to the presence of symmetries (hidden, emergent, or explicit)
that preclude the establishment of a global equilibrium state.
A notable exception arises in systems with QMBS, which
exhibit nonergodic dynamics in the form of coherent oscil-
lations of local observables after a quantum quench from
certain initial states, as observed in a recent experiment in a
Rydberg-atom quantum simulator [20]. In this case, the
observed nonergodicity stems from the existence of an
extensive set of special “scarred” eigenstates that are unre-
lated to any symmetry of the Hamiltonian [11]. This is a
remarkable departure from the ETH scenario, wherein the
finite-energy-density initial state would rapidly thermalize
and lose coherence. The violation of ergodicity via scarring
therefore presents a fundamental puzzle in our understanding
of highly excited states in thermalizing systems that has
spurred substantial recent interest.
The ubiquity and stability of QMBS are under

active investigation. Multiple possible explanations of
the underlying mechanism have been debated for the
so-called PXP model realized in the Rydberg experi-
ment [11,12,14–17,19,21–23], ranging from proximity to

integrability [15], “embedded” SU(2) dynamics [14,24],
and magnon condensation [19]; moreover, connections
have been made to gauge theory [25], symmetry-protected
topological phases [16,21], and quantum Hall physics [23].
Given these various perspectives, it is highly desirable
to find a tractable realization of scarring that can be
established rigorously and its nonergodic properties studied
analytically. While exact scarred eigenstates of the Affleck-
Kennedy-Lieb-Tasaki (AKLT) spin chains [26] have been
constructed analytically [10,13], it is unclear whether and
how these states lead to dynamical signatures resembling
the experimental observations [20].
In this Letter, we study the spin-1 XY model on a

hypercubic lattice in d dimensions. We show that this
well-known model surprisingly harbors an extensive set of
anomalous scarred eigenstates at finite energy density that
exhibit subextensive entanglement entropy and long-range
space-time crystalline order [27–29]. These scarred states
survive certain continuous deformations of themodel and are
eigenstates of an emergent SU(2) algebra that is not part of
the Hamiltonian’s symmetry group.We further show that the
scarred states lead to persistent oscillations of local observ-
ables following suitable quantum quenches. In particular, we
show that quantum evolution starting from a suitable initial
product state, prepared by applying a large symmetry-break-
ing field, shows perfect periodic revivals,while generic initial
states rapidly thermalize. Our results thus firmly establish the
existence of QMBS in the spin-1 XY model.
Model.—We study the spin-1 XY model

H ¼ J
X
hiji

ðSxi Sxj þ Syi S
y
jÞ þ h

X
i

Szi þD
X
i

ðSzi Þ2; ð1Þ
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where Sαi (α ¼ x, y, z) are spin-1 operators residing on the
sites i of a d-dimensional hypercubic lattice with volume
V ¼ Ld, and hiji denotes nearest neighbors. We hereafter
set J ¼ 1 and assume either periodic or open boundary
conditions (PBCs or OBCs) as noted. The scarred states we
present here exist for both OBCs and PBCs and for any d,
D, h. In the Supplemental Material [30], we present a class
of spin-S generalizations of Eq. (1) that also exhibit QMBS.
H possesses a global U(1) symmetry generated by spin

rotations about the z axis and, depending on boundary
conditions, may have translation and/or point-group sym-
metries. For d ¼ 1 and OBCs,H also has a nonlocal SU(2)
symmetry [31], although this symmetry is not requisite
for scarring and can be removed, e.g., by adding
H3 ¼ J3

P
i ðSxi Sxiþ3 þ Syi S

y
iþ3Þ. In fact, any U(1)-symmet-

ric exchange term preserving the bipartite structure of the
hypercubic lattice is allowed [30].
The Hamiltonian H is nonintegrable and, as we show in

Fig. 1, the statistics of its many-body energy level spacings
s in a symmetry sector with sufficiently many levels
follows the Wigner-Dyson (WD) distribution. WD level
statistics is a common proxy for chaotic and ergodic
behavior in quantum systems and indicates the absence
of hidden or emergent symmetries that would strongly
influence the level statistics (e.g., integrable systems follow
the Poisson distribution shown for comparison in Fig. 1).
It is well known that WD level statistics alone is not

sufficient to guarantee that the strong ETH, positing that all
states in an energy window obey the ETH [4], holds. In
special cases, a weak form of the ETH may hold [33] that
allows for a rare set of anomalous eigenstates that violate
the ETH. This possibility is remarkable in light of the fact
that there is no protecting symmetry that prevents the
anomalous states from mixing with thermal states at the
same energy. Nevertheless, we now demonstrate that this
scenario holds for the spin-1 XY model (1). The strong

ETH fails due to the presence of the following athermal
eigenstates:

jSni ¼ N ðnÞðJþÞnjΩi; ð2Þ

where n ¼ 0;…; V is an integer, jΩi ¼ ⨂ijmi ¼ −1i is
the fully polarized “down” state, mi ¼ −1, 0, 1 are the
eigenvalues of Szi , N ðnÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV − nÞ!=n!V!p

are normali-
zation factors, and

J� ¼ 1

2

X
i

eiri·πðS�i Þ2: ð3Þ

In Eq. (3), ri are the spins’ coordinates and π¼ðπ;π;…;πÞ.
The state jSni contains n bimagnons (i.e., doubly raised
spins), each with momentum k ¼ π. In the Supplemental
Material [30], we show that they are frustration-free
eigenstates of the Hamiltonian (1) with energy En ¼
hð2n − VÞ þ VD and total magnetization mn ¼ 2n − V.
There we also highlight another (orthogonal) tower of exact
eigenstates that arise for PBCs and D ¼ 0 in d ¼ 1.
Interestingly, the operators J� are generators of an SU(2)

algebra (distinct from that of Ref. [31]) defined by

Jz ¼ 1

2

X
i

Szi ; ½Jþ; J−� ¼ 2Jz; ½Jz; J�� ¼ �J�: ð4Þ

Note that the spin-1 nature of the microscopic spins is
crucial for this algebra to hold. These SU(2) generators do
not all commute with H: ½H; J�� ≠ 0, while ½H; Jz� ¼ 0.
Nevertheless, the scarred states (2) form a representation of
this emergent SU(2) algebra with spin j ¼ V=2 (the
maximum possible value):

J · JjSni ¼
V
2

�
V
2
þ 1

�
jSni; ð5Þ

where J · J ¼ 1
2
ðJþJ− þ J−JþÞ þ ðJzÞ2. J� thus act as

ladder operators for the scarred states:

J�jSni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mn

2

�
mn

2
� 1

�s
jSn�1i; ð6Þ

where j ¼ V=2 and mn=2 ¼ n − V=2.
The scarred states (2) at generic n are not thermal even

though they have finite energy density and reside in
symmetry sectors with exponentially many states; hence,
they violate ETH. To show this, we first consider their
bipartite entanglement entropy SA ¼ −trρA ln ρA, where ρA
is the reduced density matrix for a region A of size
VA ¼ V=2. We plot SA vs energy E for eigenstates in
the zero-magnetization sector in Fig. 2, highlighting the
lightly entangled scarred state jSV=2i with a red circle
(eigenstates are obtained using exact diagonalization for

FIG. 1. Distribution of many-body level spacings s in the
middle half of the spectrum of H for d ¼ 1 with open boundary
conditions and J3 ¼ 0.1, D ¼ 0. The data are taken in the
U(1) sector

P
i S

z
i ¼m¼−10 and the inversion sector I ¼ −1.

The r value [32] of the distribution given in the figure is close to
the Wigner-Dyson result, rWD ≈ 0.5295.
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d ¼ 1, L ¼ 10). ETH-obeying states have extensive
“volume-law” entanglement entropy, SA ∝ V. For states
near the middle of the spectrum (nominally at infinite
temperature), SA should approach the value for a random
state, SranA ¼ ðV=2Þ ln 3 − 1

2
[34] (dashed line in Fig. 2),

which appears to be approximately true for a large fraction
of states near E ≈ 0. Thus, to show that the states (2) violate
the ETH, we need only show that their entanglement
entropy is subextensive.
The simplicity of the states (2) allows for an analytical

calculation of the full entanglement spectrum from which
the entanglement entropy can be obtained (see the
Supplemental Material [30]). The resulting values of SA
for the state jSV=2i are plotted in the inset of Fig. 2 as a
function of system length L for d ¼ 1. In fact, one can show
analytically that SA takes the asymptotic form [30]

SAðn ¼ V=2Þ ⟶
V→∞

1

2

�
ln
πV
8

þ 1

�
; ð7Þ

cf. inset to Fig. 2. The state jSV=2i has the highest
entanglement of all scarred states (2) (cf. Fig. 2), so
Eq. (7) demonstrates conclusively that these states exhibit
subextensive entanglement entropy scaling at most loga-
rithmically with system size.
It is instructive to compare the scarred states (2) with

other examples of exact excited states of nonintegrable
models, in particular, the “η-pairing” states of the Hubbard
model [35] and the scarred states of the AKLT chain [10].
Both of the latter examples also host towers of states with
logarithmic entanglement [13,36] obtained by acting
repeatedly with some operator on a parent state. The
η-pairing example is unique in that it is protected by

“η symmetry”; i.e., the analogs of J� are eigenoperators of
the Hamiltonian and the η-pairing states are the only states
in their respective symmetry sectors. Thus, the η-pairing
states are neither ETH-violating nor bona fide scarred states
(despite many similar features). The AKLT scarred states
do violate the ETH and, interestingly, are created by
the same operator Jþ as in Eqs. (2) and (3). However,
the parent state in that case is the AKLT ground state rather
than the fully polarized state jΩi. This is crucial because the
AKLT scarred states do not form a representation of the
SU(2) algebra (4). It is an important outstanding question
whether such a structure exists for the AKLT model, as it
could be used to determine the dynamical signatures of the
scarred states, which (to the best of our knowledge) remain
unknown. For the scarred states presented here, this is not
the case, and we now show that their dynamical signatures
can be deduced directly from the SU(2) algebra (4).
Space-time crystalline order.—We first demonstrate the

presence of off-diagonal long-range order (ODLRO) [37] in
the scarred states associated with the condensation of
bimagnons at momentum π. Such order is also present
in the η-pairing states, where it is indicative of super-
conductivity [35]. Here, the order is of a spin-nematic
nature: the order parameter Oq ¼ ð1=VÞPi e

iri·qðSþi Þ2 has
long-range connected correlations at wave vector q ¼ π in
the scarred states. This is indicated by a finite value of the
correlation function hSnjO†

πOπjSni [note hSnjO†
πjSni ¼ 0

by U(1) symmetry]. Using Eqs. (3) and (6), one immedi-
ately obtains

hSnjO†
πOπjSni ¼ 1 −m02

n þOð1=VÞ; ð8Þ

where the Oð1=VÞ terms vanish in the limit V → ∞ and
m0

n ¼ mn=V is the magnetization density. We thus find that
the scarred states jSni (aside from the zero-measure set
withm0 ¼ �1) possess spin-nematic ODLRO. This implies
that the spin fluctuations in the x-y plane break the U(1)
spin-rotation symmetry spontaneously without long-range
magnetic order (i.e., time-reversal symmetry is preserved).
This remarkable property also heralds ETH violation:
ODLRO is impossible for ETH-obeying states in the
middle of the spectrum [such states are nominally at
infinite temperature, where the thermal density matrix
ρ ¼ e−βH in a given U(1) sector is trivial].
The ODLRO in Eq. (8) immediately implies that the

scarred states also support long-range space-time correla-
tions, the defining characteristic of space-time crystalline
order [28,38]. Up to 1=V corrections, we have

RehSnjO†
πðtÞOπð0ÞjSni ¼ ð1 −m02

n Þ cosð2htÞ: ð9Þ

This space-time crystalline order can ultimately be
traced back to the condensation of π bimagnons. We
note that the existence of this order does not violate the
no-go theorems establishing its impossibility at thermal

FIG. 2. Bipartite entanglement entropy SA of eigenstates of H
for d ¼ 1, L ¼ 10, and ðh;D; J3Þ ¼ ð1; 0.1; 0.1Þ with OBCs.
States in the zero-magnetization sector (smaller points) are
color coded by the density of states (warmer colors imply
higher density). The total number of states in this sector is
dimHm¼0 ¼ 8953. The dashed line at SranA ¼ ðL=2Þ ln 3 − 1

2

indicates SA for a random state. Larger red points indicate
scarred states (2) in U(1) sectors with mn ≠ 0. (Inset) SA for
jSL=2i as a function of L, cf. Eq. (7).
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equilibrium [28,39]; since the scarred states violate the
ETH, these no-go theorems do not apply.
Dynamical signature of scars.—We now demonstrate

that the eigenstate properties of jSni derived above have
significant consequences for the dynamics of local observ-
ables after certain quantum quenches. To illustrate, we
initialize the system in the ground state jψ0i of the
staggered rhombic anisotropy Hamiltonian

HA ¼ 1

2

X
i

eiri·π½ðSxi Þ2 − ðSyi Þ2�: ð10Þ

This Hamiltonian is relevant to scarring since it can be
rewritten in the form HA ¼ 1

2
ðJþ þ J−Þ≡ Jx. jψ0i is thus

the lowest-weight state of Jx in the spin-V=2 representation
of the SU(2) algebra (4), which we call the “nematic Néel”
state,

jψ0i ¼ ⨂
i

�jmi ¼ þ1i − eiri·πjmi ¼ −1iffiffiffi
2

p
�
: ð11Þ

Since this is an eigenstate of the spin-V=2 representation of
Eq. (4), it resides entirely within the scarred manifold:

jψ0i ¼
XV
n¼0

cnjSni; c2n ¼
1

2V

�
V

n

�
: ð12Þ

The fidelity of this initial state under evolution with H is
thus given by

F 0ðtÞ ¼ jhψ0jψ0ðtÞij2 ¼ cos2VðhtÞ; ð13Þ

which exhibits perfect revivals with period T ¼ π=h. As a
result, all local observables oscillate with the revival period.
This behavior is shown in Fig. 3, where we compare
fidelities of other initial states that decay rapidly. The inset
to Fig. 3 shows entanglement dynamics after a quench:
while generic product states rapidly approach maximal
entanglement, the special initial state jψ0i remains a
product state under time evolution with H. Indeed, this
evolution merely imparts phase factors e∓iht to the terms
jmi ¼ �1i in Eq. (11). Physically this corresponds to a set
of spin-nematic directors precessing in the x-y plane with
frequency twice the applied field, see Fig. 4. The local
director angle θi may be defined in terms of the phase of the
local order parameter

Oi ¼ ðSþi Þ2: ð14Þ

Time evolution yields hψ0ðtÞjOijψ0ðtÞi ¼ e2iht ≡ jOije2iθi
and hence the phase winds as θi ¼ ht with jOij ¼ 1. The
directors thus oscillate coherently and in a synchronized
fashion when initially staggered in space, as in Eq. (11) and
shown schematically in Fig. 4.

Crucially, this dynamical behavior does not originate
from a set of freely precessing directors. If it did, the
“nematic ferro” state (with directors aligned) would also
show oscillations, and this is clearly not the case (cf. Fig. 3).
Rather, the observed revivals originate from the precession
of a single emergent macroscopic staggered director. The
existence of this director is enabled by the long-range
connected correlations in the scarred states jSni, which in
turn originate from the emergent SU(2) algebra (4).
Finally, we note that the scarred states persist in the

presence of the staggered rhombic anisotropyHA, Eq. (10).
Because HA ∝ Jx, it cants the effective magnetic field
about which the macroscopic director precesses (indeed,
more generally, one can add an additional anisotropy
HB ∝ Jy). The resulting scarred eigenstates can be obtained
from the states jSni by an appropriate SU(2) rotation using
the generators (4). This observation implies that one need
not quench the staggered anisotropy in order to observe
persistent oscillations. In a system with fixed staggered

FIG. 3. Many-body fidelity F ðtÞ ¼ jhψð0ÞjψðtÞij2 for various
initial states (d ¼ 1, L ¼ 8, and remaining parameters as in
Fig. 2). The nematic Néel initial state [Eq. (11)] exhibits perfect
revivals described by Eq. (13), while generic initial states decay
rapidly. (Inset) Entanglement dynamics after a quench, showing
that generic initial states lead to rapid entanglement growth and
saturation near the value for a random state (dashed line), while
the special initial state does not.

FIG. 4. Schematic of the spin-nematic order parameter on a 2D
square lattice precessing around the applied field,

P
i S

z
i ∝ Jz.

The staggered local directors (blue ovals) are synchronized such
that their dynamics stay within the manifold of scarred states,
cf. Eqs. (12)–(14).
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rhombic anisotropy as in Eq. (10), one may instead polarize
the initial state by applying a large homogeneous magnetic
field ∝ Jz. The dynamics of the fully polarized state will
then show persistent oscillations due to the presence of the
rotated scarred states, whereas generic states will not.
Conclusion.—In this Letter, we uncovered a set of exact

scarred eigenstates in nonintegrable spin-1 XY magnets,
leading to weak ergodicity breaking and strong-ETH
violation. These states have properties that are impossible
in ETH-obeying states, including subextensive entangle-
ment entropy and spin-nematic ODLRO. The scarred states
are maximal-spin eigenstates of an emergent SU(2) algebra
that does not commute with the Hamiltonian. Using this
algebra, we showed that the scarred states enable coherent
many-body revivals following suitable quantum quenches.
This Letter provides a novel context in which several

hypothesized characteristics of QMBS in the Rydberg-
atom quantum simulator [20] become exact. For example,
in Ref. [14] it was suggested that an emergent SU(2)
algebra could be responsible for the observed revivals,
while Ref. [19] numerically demonstrated ODLRO and
space-time crystalline order in the scarred states. Thus, the
exact scarred states uncovered here suggest a common
paradigm for QMBS that could be relevant across various
physical models and which can be compared with other
exact mechanisms leading to strong-ETH violation, includ-
ing embedded Hilbert spaces [18,21,24,30] and emergent
invariant subspaces [8,9,40]. This Letter also opens the
possibility of searching experimentally for scarred dynam-
ics in physical XY magnets with appropriate single-ion
anisotropies or engineering it in superconducting circuits
that could simulate spin-1 XY models.

We thank C.-J. Lin for pointing out the connection
between our results and those of Ref. [24], on which we
comment further in the Supplemental Material [30]. This
work is supported by Microsoft and the Laboratory for
Physical Sciences. T. I. acknowledges a JQI postdoctoral
fellowship and Iowa State University startup funds.
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