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We elucidate the nature of neutral collective excitations of fractional quantum Hall liquids in the long-
wavelength limit. We demonstrate that they are chiral gravitons carrying angular momentum −2, which are
quanta of quantum motion of an internal metric, and show up as resonance peaks in the system’s response to
what is the fractional Hall analog of gravitational waves. The relation with existing and possible future
experimental work that can detect these fractional quantumHall gravitons and reveal their chirality is discussed.
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Introduction and motivation.—The study of neutral
excitation spectra of fractional quantum Hall (FQH) liquids
has a long history. It is now well understood that there is a
sharp magnetoroton mode exhibiting a “roton”minimum at
a finite wave vector [1], which has been observed exper-
imentally [2]. The observability of this mode is related to
the fact that it is a bound state of a Laughlin quasiparticle-
quasihole pair (or a quasiexciton), which can be created by
the (Landau-level projected) density operator, which is
dipole active; it can thus be excited electromagnetically at
the appropriate finite wave vector. The sharpness of the
magnetoroton mode is tied to the fact that its energy is
below the continuum formed by more complicated multi-
quasiparticle or quasihole excitations (or multirotons).
On the other hand, the understanding of collective

excitations at long-wavelengths is far from complete.
The magnetoroton dispersion enters the continuum as
the wave vector decreases, making it very hard to identify,
and even casting doubt on its presence. More serious is the
fact that Kohn’s theorem dictates that dipole spectral weight
is exhausted by the cyclotron mode, making the single
mode approximation [1] completely ineffective at zero
wave vector. This also renders any long-wavelength intra-
Landau level collective excitation invisible to electromag-
netic probe in the linear response regime [3].
In a parallel line of work, one of us [4] pointed out that

there exists an internal geometrical degree of freedom (or
internal metric) responsible for the intra-Landau level
dynamics of the system, which is not properly captured
by the standard description of FQH liquids in terms of
topological quantum field theories. Physical implications of
this geometrical degree of freedom have been discussed
extensively [5–9], in particular its experimental observ-
ability [10–15]. Furthermore, it has also been argued [4,
16–19] that this internal metric has its own quantum
dynamics, which gives rise to the long-wavelength collec-
tive excitations in FQH liquids that can be viewed as

“gravitons.” This provides a new insight into the invisibility
of the long-wavelength intra-Landau level collective mode
to electromagnetic probes: the graviton carries total angular
momentum 2, mismatching that of the photon which carries
angular momentum 1. In a recent paper, another of us [20]
argued that these gravitons can instead be excited and
probed using acoustic waves in the crystal, whose effects
mimic those of gravitational waves.
In this Letter we present numerical results that demon-

strate unequivocally the presence of the graviton mode,
which shows up as a pronounced peak in the spectral
function of the dynamical gravitational response [20]. We
further reveal the chiral nature of the gravitons, namely, that
they come with a specific polarization corresponding to
angular momentum [21], −2. We will discuss possible
experimental probes of these gravitons and, in particular,
their polarization, as well as the relation between our results
and closely related works.
Spectral functions.—Ref. [20] considered the coupling

between an oscillating effective mass tensor and the intra-
Landau level degrees of freedom of a two-dimensional
electron gas (2DEG) confined to the lowest Landau level
(LLL). For a two-body interaction of the form

Vð2Þ ¼
X
i<j

Vðri − rjÞ ¼
1

2

X
q

Vqρqρ−q; ð1Þ

where Vq is the Fourier transform of electron-electron
interaction potential VðrÞ and

ρq ¼
X
i

eiq·ri ð2Þ

is the density operator, it was found that the coupling is
described by the operator

Ôð2Þ ¼
X
q

ðq2y − q2xÞVqe−ð1=2Þq
2l2 ρ̄qρ̄−q; ð3Þ
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in which

ρ̄q ¼
X
i

eiq·Ri ð4Þ

is the LLL projected density operator and R is the guiding
center coordinate. It is straightforward to generalize the
above to multiparticle interactions; of particular relevance
to our later discussion is the case of a three-body interaction

Vð3Þ ¼ 1

6

X
q1q2

Vq1q2ρq1ρq2ρ−q1−q2
; ð5Þ

in which case the coupling is given by

Ôð3Þ ¼
X
q1q2

Vq1q2ðq21y þ q22y þ q1yq2y − q21x − q22x − q1xq2xÞ

× e−
l2
2
ðq2

1
þq2

2
þjq1þq2j2Þρ̄q1

ρ̄q2 ρ̄−q1−q2 : ð6Þ

Our numerical studies are based on the calculation of
spectral functions of Ô and its close relatives Ôσ (to be
specified below) in finite-size systems:

IσðωÞ ¼
X
n

jhnjÔσj0ij2δðω − ωnÞ; ð7Þ

where j0i is the ground state and jni is an excited state with
excitation energy ℏωn (from here on we set ℏ ¼ 1.) This is
the system’s transition rate due to an oscillating effective
mass tensor metric, which is analogous to an oscillating
metric induced by a gravitational wave.
To establish the chiral nature of the graviton, it is

convenient to study operators that have “handedness”
instead of the ones given in Eqs. (3) and (6). Therefore,
we define

Ôð2Þ∓ ¼
X
q

ðqx ∓ iqyÞ2Vqe−ð1=2Þq
2l2 ρ̄qρ̄−q; ð8Þ

where we have discarded an overall minus sign. A similar
extension can be done for the three-body, or for that matter,
to the n-body case of the Read-Rezayi [22] sequence. In
this Letter we will focus on the Moore-Read (MR) state
[23] with three-body interactions. As we will see, Ô∓ are
the creation and annihilation operators of the graviton,
respectively, while Ô ¼ ðÔþ þ Ô−Þ=2 is equivalent to the
displacement operator in a harmonic oscillator, which
couples to a linearly polarized “gravitational wave” [20].
Numerical results.—To compare IσðωÞ for different sizes

it is convenient to normalize it, by dividing out the factor
h0jÔ†

σÔσj0i, so that
Z

∞

−∞
IσðωÞdω ¼ 1: ð9Þ

We start with the Laughlin states. We consider both cases
of fermions (ν ¼ 1=3) as well as bosons (ν ¼ 1=2) on

toroidal geometries and evaluate Eq. (7). We have studied
sizes up to 12 particles. The latter is generally believed to
be larger than the correlation length (or size) of the system
beyond which thermodynamic behavior becomes visible.
However, quantitative effects would still persist. For small
sizes almost the entire weight is exhausted by a single
graviton peak. For larger sizes we observe broadening of
the resonance and the appearance of smaller nearby peaks.
However, the integrated weight of the resonance increases
linearly with size, a trend that generally is not followed by
the height of a single peak. For all the sizes that we
considered the graviton resonance produces the largest
response in the system. Figures 1 and 2 show these cases
for fermions and bosons, respectively.
The Hamiltonian for both cases consists of a single

pseudopotential for relative angular momentum 1 (fer-
mions) or 0 (bosons). Our energies are given in units of
the strength of these pseudopotentials. We note that the
energies for which we see graviton responses are consistent
with previous numerical calculations [24], where the
graviton is the k ¼ 0 energy of the Girvin-MacDonald-
Platzman magnetoroton collective mode inside the excited
states continuum.
To establish that gravitons are chiral on the torus we

employ the chiral operators Ô∓. Interestingly, Ô− has the

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.3 1.4 1.5 1.6
0.0

0.2

0.4

0.6

0.8

N=12

N=11

N=11 Hex

N=10

N=10 Hex

Laughlin state
fermions

ω

I(ω)

FIG. 1. A bird’s-eye view of the I−ðωÞ from the fermionic
Laughlin ground state at ν ¼ 1=3 for various sizes and geometries
(Hex stands for hexagon geometry; square geometry otherwise).
The graviton response can clearly be seen. The inset shows more
details near energies where the response is strong. For N ¼ 10
and 11 we recovered over 97% of the total weights. Unlike the
case of bosons (shown below) the “background noise” (very
small amplitude scatter of the data not near the graviton signal)
seems to be stronger for fermions, which are also computationally
more costly than bosons. Accordingly, for N ¼ 12 we recovered
90% of the weight over 87% of which is in the window of the
inset. The rest, at higher energies, appears to be background
noise. For example, we recover over 99% of the weight for 10
electrons. However, no significant peaks other than those shown
in the inset were seen. The total weight in the inset is only 87% of
the total weight. In other words about 12%, at higher energies, is
just background noise.
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same effect as the operator of Eq. (3), while Ôþ annihilates
the model state, and so IþðωÞ is identically zero. The chiral
operators, as noted, can be generalized to n-body pseudo-
potential Hamiltonians for the Read-Rezayi sequence. We
have explicitly verified this for the three-body Hamiltonian
of the MR state. In fact, in all our plots (except the
Coulomb interaction case below) we show I−ðωÞ.
The operator Ô− creates excitations with angular

momentum −2, which is also the angular momentum of
the gravitons they create. To reveal this chirality more
explicitly we also investigate the two Laughlin states on
disk geometry where angular momentum is a good quan-

tum number. Instead of using Eq. (8), we express Ôð2Þ∓ in

terms of anisotropic complex pseudopotentials [25]:Oð2Þ
þ ∝P

M jmþ 2;Mihm;Mj andOð2Þ
− ∝

P
M jm;Mihmþ 2;Mj,

where jm;Mi is a two-body state with the relative angular
momentum m and center-of-mass angular momentum M,
with m ¼ 1 for fermions and m ¼ 0 for bosons. We now
see why Ôþ annihilates the Laughlin state: it tries to turn a
pair with relative angular momentum m into mþ 2, which
does not exist in the Laughlin state. As a result, IþðωÞ is
zero everywhere. On the other hand, Figs. 3(a) and 3(b)
show strong graviton peaks in I−ðωÞ for the fermionic and
bosonic cases, respectively. Comparing to the cases on the
torus, we find good agreement in peak positions, and
noticeably less broadening and background noise. The
results are not sensitive to the number of orbitals we keep as
long as we have enough orbitals to accommodate the
Laughlin states; see Figs. 3(c) and 3(d).
We now return to toroidal geometry and investigate the

graviton contribution to the spectral functions for the
Coulomb potential at ν ¼ 1=3, which is the experimentally
most relevant case. Figure 4 shows I−ðωÞ for electrons at
ν ¼ 1=3 on a square torus, where we use the Coulomb
interaction including finite quantum-well thickness

appropriate for the samples of Ref. [26], whose relation
with our work is discussed below. While the weights are
smaller than those of the model states, a clear signature of
the graviton is discernible in comparison to other peaks
further up in the continuum. In this case, Ôþ does not
annihilate the Coulomb ground state, because there do exist
pairs with relative angular momentum m ¼ 1 in the ground
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FIG. 2. Same as Fig. 1 except for bosons at ν ¼ 1=2. In this
case we have collected 99% of the total weight. The graviton
response again stands out against the background noise. For all
sizes and geometries the weights shown in the inset constitute
over 98% of the total. FIG. 3. A bird’s-eye view of (a) and (c) fermionic I−ðωÞ with

3N and 3N − 2 orbitals, and of (b) and (d) bosonic IðωÞ with 2N
and 2N − 1 orbitals for N particles on disk geometry. For all
sizes, we recovered up to 97% of the total weight for the
fermionic case and up to 99% for the bosonic case. In all cases,
the graviton absorptions stand out against the background noise.
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FIG. 4. The graviton response of the Coulomb potential ν ¼
1=3 ground state with hexagonal unit cell. The x axis represents
the excitation energy measured from the ground state energy. The
large symbols at the bottom represent the relative weight [to
quantify the relative strengths, IþðωÞ is normalized by the total
weight of the I−ðωÞ] of IþðωÞ (N ¼ 12 square and N ¼ 11
circular symbols). The inset shows scaling of the graviton energy
vs inverse of the system size. The lower points are energies of the
main peak, whereas the upper points are the average energies
weighted by the size of the corresponding peaks.
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state. Nonetheless, the chiral nature of the graviton is
evident by the strong suppression of the IþðωÞ compared to
I−ðωÞ. This is because such pairs are rare, reflecting the
Laughlin correlation.
Our bounds on the energy of the graviton (0.07–0.105 in

units of e2=4πε0l, l is the magnetic length) shown in the
inset of Fig. 4, are consistent with the resonance energy
(0.084) found in the inelastic light scattering measurement
of Ref. [26]. In such a two-photon process (one photon
absorbed and one photon emitted, also known as Raman
scattering), the total angular momentum of the two photons
matches that of the graviton if they have the appropriate
polarization; as a result gravitons can be excited [18]. We
therefore identify the resonance of Ref. [26] as due to the
graviton excitation.
To obtain a more definitive prediction one may need a

more systematic sampling of the resonance energies, which
appear to be broadened and hence introduce the scatter we
observe in the data.
We next consider the MR states. As in the case of the

Laughlin states, for even numbers of particles the graviton
has (orbital) spin of 2 and obeys Bose statistics. However,
for an odd number of particles, in addition to the graviton,
in Ref. [16] it was shown that there exists a fermionic
“gravitino” resonance, which has spin 3=2. In this Letter we
study the former, but defer the investigation of gravitino to
future studies. Figure 5 shows IðωÞ (which is equivalent to
I−ðωÞ for the same reason as the Laughlin case) for a three-
body interaction that makes the MR state the exact ground
state for fermions at ν ¼ 1=2. For this part, we have again
studied the square and hexagonal torus, which are the two
highest symmetry geometries.
In the case of the square geometry, the threefold

degeneracy of the MR state for an even number of electrons
is split into two wave vectors that are not related by
symmetry: one in the Brillouin zone (BZ) corner and a pair
of states on the BZ boundary (shown by asterisks in the size
labels in our plots). In both cases of the fermions and
bosons we have included some of these ground states. In
some cases for the same size and geometry the two distinct

ground states either show a single strong peak or a few
smaller neighboring peaks, but with comparable total
weights, which appear to indicate broadened resonance
with a shorter lifetime. For the hexagonal geometry all 3
ground states have wave vectors related by symmetry, and
depending on size, they exhibit both sharp and broad-
ened peaks.
In Fig. 6 we present the results for boson MR states at

ν ¼ 1. For this case we have also calculated I−ðωÞ on a
disc; see Fig. 7. The results are consistent with those
obtained on the torus, although the graviton peak appears
sharper. Note that on a disc subtleties associated with the
threefold degeneracy and differences between even and odd
particle number cases do not exist, which may be contrib-
uting factors to better quality data.
As seen by the size of the weights in these figures the

noise level increases considerably in the three-body case
and is worse for fermions. A similar trend was observed for
the Laughlin states as noted earlier. Nevertheless, the
graviton peaks do stand out against the background noise.
Experimental observability and future work.—In

Ref. [20] it was suggested that the graviton will show
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FIG. 5. The spectral function I−ðωÞ for the MR state of
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particle number N.
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up as a sharp resonance peak in the absorption spectrum of
the acoustic wave propagating perpendicular to the 2DEG,
which is an analog of the gravitational wave. Our numerical
results support this, as the spectral functions calculated here
are those describing the coupling between acoustic waves
and 2DEG. Such experiments have yet to be performed.
More recently it was argued that the graviton will dominate
quench dynamics in a FQH liquid [24]. As discussed
above, we identify the resonance peak in the inelastic light
scattering at ν ¼ 1=3 [26] as due to the graviton. To gain a
more detailed understanding we need to calculate the
appropriate spectral function for such processes. As pointed
out previously [18] the chirality of the graviton can be
revealed through the polarization of the light in a Raman
process. Here we are able to make a much more specific
prediction: In order to excite the chiral graviton with
angular momentum −2, the incoming light needs to be
circularly polarized to have angular momentum −1, while
the (Raman or inelastically) scattered light will have the
opposite polarization and have angular momentum þ1,
thus transferring a net angular momentum −2 to the 2DEG.
In a very recent experimental work [27], inelastic light
scattering was performed on the second Landau level states.
We tentatively attribute the sharp resonance at ν ¼ 7=3
(which is termed a new plasmon) to the graviton, similar to
that at ν ¼ 1=3 [28]; the much broadened peak at ν ¼ 5=2
is consistent with the broadening we found in our calcu-
lations for the MR state. But much more detailed studies
using interactions and operators appropriate to the second
Landau level, which involve a more complicated form
factor, are needed. We leave these and other details to
future work.
In summary, we have found a clear signature of a chiral

graviton mode for both Laughlin and MR states, and
particularly for the ground state of the Coulomb interaction
at ν ¼ 1=3. In all cases of torus studies the total weights,
the bulk of which constitute the graviton resonance, scale
linearly with system size. Our results are consistent with the
inelastic light scattering experiment of Pinczuk et al. [26]
that sees a resonance with zero momentum.
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