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We numerically simulate two-dimensional, decaying elastoinertial turbulence using the finitely
extensible, nonlinear, elastic spring model. We vary the polymer concentration over seven decades,
and observe two turbulent elastoinertial regimes. In the weakly coupled regime only the small scale
structures change, while in the strongly coupled regime all structures change. This regime is dominated by
elastoinertial shock waves with drag reduction properties; i.e., the energy decay rate decreases when the
polymer concentration increases.
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There is great scientific interest in the fluid mechanics of
polymer solutions, and in particular in the context of
turbulent drag reduction in pipe flow [e.g., [1,2] ]. This
so-called elastoinertial turbulence, which is governed by a
combination of inertial and elastic stresses, is not to be
confused with elastic turbulence, which is governed by a
combination of viscous and elastic stresses [e.g., [3] ]. One
may distinguish two regimes of elastoinertial turbulence
[4]. At modest polymer concentration, the turbulence
changes only at the large wave numbers (small scales),
while, at a large polymer concentration, the turbulence
changes over the entire wave number range. This strongly
coupled elastoinertial turbulence has universal features and,
in pipe flow, this state is known as Virk’s maximum drag
reduction asymptote [5]. The characteristics of elastoiner-
tial turbulence depend on the dimensionality. In Newtonian
(polymer free) 3D turbulence there is a downscale energy
cascade, i.e., a transport of inertial energy from large to
small scales. In the weakly coupled regime, the polymers
weaken this downscale cascade, enhancing the energy at
the large scales, and reducing the energy at the small scales
[6–8]. In the strongly coupled regime, the downscale
energy cascade regains strength, reducing the energy at
the large scales and enhancing the energy at the small scales
[9]. In 2D, on the other hand, the energy cascade in the
Newtonian regime is upscale, i.e., from small to large scales
[10]. In the weakly coupled regime, the polymers suppress
the upscale energy cascade, with a reduction of the energy
at the large scales and an increase at the small scales
[11–13] To our knowledge, strongly coupled elastoinertial
turbulence has not yet been studied in 2D.
To shed light on this regime, we numerically simulate

elastoinertial decaying 2D turbulence, using the finitely
extensible nonlinear elastic (FENE) spring model [14]. We
vary the polymer concentration over seven decades, and
study the turbulence properties in both the weakly and the
strongly coupled regimes. We thereby show that, in both
regimes, the energy cascade is downscale over the entire

wave number range. We furthermore show that the strongly
coupled regime is dominated by elastoinertial shock waves,
with drag reduction characteristics; i.e., the energy decay
rate decreases when the polymer concentration increases. It
is emphasized that decaying elastoinertial turbulence sus-
tains over a long timescale (compared to the eddy turn over
time), which is markedly different from elastic turbulence,
which decays rapidly, and requires an external forcing to
sustain [15,16].
The FENE spring model reads [14]:

∇ · u ¼ 0; ð1aÞ

∂tuþ u · ∇uþ ∇p − ν∇2u ¼ ναλ−1∇ · ½sc�; ð1bÞ

∂tcþ u · ∇c − ∇uT · c − c · ∇u ¼ λ−1½δ − sc�
− κΔx4

ffiffiffiffiffiffiffiffiffi
E∶E

p ∇4c: ð1cÞ

Here ν ¼ η=ρ is the solvent kinematic viscosity, η is the
solvent dynamic viscosity,ρ is the fluidmass density,p is the
fluid pressure divided by ρ, E ¼ 1

2
ð∇uþ ∇uTÞ is the rate

of strain tensor, u is the fluid velocity vector, c is the
nondimensional polymer conformation tensor [14], s ¼
½1 − trðcÞ=b�−1 is the nonlinear spring constant, α ∼ nR3

G
is the polymer coil volume fraction at equilibrium, RG is the
coil size at equilibrium, n is the polymer number density,
λ ∼ ρνR3

G=ðkBTÞ is the polymer relaxation time, kBT is the
Boltzmann energy, b ∼ ðl=RGÞ2 is the extensibility param-
eter, l is the polymer contour length, κ is a nondimensional
prefactor, κΔx4

ffiffiffiffiffiffiffiffiffi
E∶E

p
is the artificial hyper diffusivity,

Δx ¼ Lx=Nx is the grid spacing, Lx is the domain size,
andNx is the number of grid points per dimension. By fixing
the magnitude of κ ∼ 1, the artificial hyper diffusion term
−κΔx4

ffiffiffiffiffiffiffiffiffi
E∶E

p ∇4c suppresses the cmodes with wavelengths
that are comparable or smaller than Δx; i.e., it ensures that
the numerical scheme produces a well-resolved solution.
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Equation (1) is simulated on a biperiodic domain. The
numerical method has been used in Refs. [17,18], and is
described in Sec. S4 in the Supplemental Material [19],
which includes Ref. [20]. The domain size is Lx ¼ 2π and,
unless states otherwise, we useN2

x ¼ 1282 grid points and a
viscosity of ν ¼ 1 × 10−3. The artificial hyper diffusivity is
κ ¼ 0.2. The relaxation time is λ ¼ 20, which in the
Newtonian flow at t ¼ 4 corresponds to a Weissenberg
number of We ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffihE∶Eip
≈ 50, where h·i is the spatial

average. The extensibility parameter is b ¼ 10, which
corresponds to semiflexible polymer chains, and the con-
centration parameter is varied between α ¼ 10−1 and 106.
We introduce the fluid elasticity parameter E ¼ να=ðλU2Þ,
which is the order of magnitude estimate of the ratio of the
elastic energy P ¼ − 1

2
ναbλ−1 log ½1 − trðcÞ=b� ∼ ναλ−1

and the inertial energy K ¼ 1
2
u2 ∼ U2, where U is the

rms of the velocity at t ¼ 0. Based on these parameters, E is
varied between 5 × 10−6 ≤ E ≤ 5 × 101. Depending on the
value for E the flow is either in the Newtonian (N), weakly
coupled (W), strongly coupled (S), or laminar (L) regime.
Although we demarcate these different flow regimes with
vertical dashed lines in Figs. 3 and 4 below, there are no
sharp boundaries betweenN,W, S, and L, and these dashed
lines are to be interpreted as smooth transitions.
The initial conditions at t ¼ 0 are an equilibrium

polymer conformation c ¼ δ and a random velocity field
u, where the energy is concentrated in the modes with
jkj ≤ 8. The initial velocity field is normalized, such that
U ¼

ffiffiffiffiffiffiffiffiffi
hu2i

p
¼ 1 at t ¼ 0. After starting the simulation, the

initial, random configuration develops into a turbulent
state. During the initial transient, the polymers adsorb a
portion of the initialK. We artificially force the system with
a body force ∼ðu=ΔtÞ½1=hu2i − 1� between 0 < t < tF,
where tF ¼ 1 is the forcing time, such that hu2i ¼ 1 during
0 < t < tF, while the polymers absorb energy. Here Δt is
the computational time step. At t ¼ tF the forcing is
switched off, and the system is let to decay. Figure 1
shows the resulting time development of several wave
number components of the spectra of K and of P for S with
E ¼ 4 × 10−1. At t ¼ 0, K is concentrated at jkj ≤ 8. As

time progresses, K is transformed into P, and for short
times t ≤ 0.3, P is concentrated at jkj ≤ 8. At larger times,
turbulence sets in, which transfers energy from large to
small scales. The spectra develop over a characteristic
timescale, which is of the order of tF ¼ 1 (red dashed
lines), at which instant the forcing is switched off and the
system is let to decay.
In addition to the 1282 simulations we have conducted

simulations using 10242 grid points, a solvent viscosity
of ν ¼ 5 × 10−5, and a forcing period of tF ¼ 2, for N with
E ¼ 0, W with E ¼ 5 × 10−4, S with E ¼ 5 × 10−1, and L
with E ¼ 5 × 101, while the other parameters κ ¼ 0.2,
b ¼ 10, and λ ¼ 20 are unchanged. The vorticity fields
at t ¼ 4 for these high resolution simulations are plotted in
Fig. 2. In theN simulation, we observe the usual large-scale
vortex structures. The vorticity in W is similar, although
somewhat modified, with the emergence of filamentlike
structures, also observed in [11]. In S there is a complete
alteration of the turbulence, with the emergence of elas-
toinertial shock waves; see Movie S1 in [19]. These shocks
travel normal to the fluid velocity vector, and share
similarity but differ in details with the longitudinal elas-
toinertial shocks, which were predicted in Ref. [21]. In L
the vortical structures do not evolve and remain identical to
those at t ¼ 0.
The equations for K and for P read [20]:

∂tK þ u · ∇ðK þ pÞ ¼ ∇ · ðσ · uÞ −D − T; ð2aÞ
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FIG. 1. The time development of several wave number com-
ponents (legend) of the spectra of the inertial energy (a) and of the
elastic energy (b) for S with E ¼ 4 × 10−1. The red dashed lines
mark the end of the forcing and the start of the free decay.

FIG. 2. Vorticity field at t ¼ 4 in high resolution simulations
(10242 grid points), corresponding to Newtonian flow (N) with
E ¼ 0, weakly coupled flow (W) with E ¼ 5 × 10−4, strongly
coupled flow (S) with E ¼ 5 × 10−1, and laminar flow (L) with
E ¼ 5 × 101.
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and:

∂tPþ u · ∇P ¼ T − R; ð2bÞ

where σ ¼ ναλ−1sc is the polymer stress tensor divided
by ρ, D ¼ ν∇u∶∇u is the viscous dissipation of K, T ¼
∇u∶σ is the transformation between K and P, and R ¼
1
2
λ−1trðσÞ½1 − trðcÞ=b�−1 is the dissipation of P through

polymer relaxation.
Figure 3(a) shows the spatial mean (solid lines) and the

spatial standard deviation (dotted lines) of K and P as
functions of E at t ¼ 4, and Fig. 3(b) shows the corre-
sponding data for T, D, and R. In N (E ≲ 5 × 10−4), K
does not change upon increasing E and P ≪ K, in W
(5 × 10−4 ≲ E ≲ 10−2) K decreases with E and P < K, in S
(10−2 ≲ E ≲ 5 × 10−1) K increases with E and P > K, and
in L (5 × 10−1 ≲ E) K does not change upon increasing E
and P ≫ K. In both W and S the decay is dominated by R,
while D ≪ R; i.e., the polymers absorb energy from the
flow, and dissipate this via chain relaxation. In S the spatial
standard deviation of T is several orders of magnitude
larger than its spatial mean.
To study the physics of T, we develop an analytical

model for the elastoinertial shear waves (Sec. S1 in [19]).
The model shows that on average P ≈ 3K, and that K and P
are roughly in phase with each other while they lag T by

π=2. To verify the significance of this model, we develop an
algorithm to extract, from the simulation data, the profiles
of fluid mechanical variables across the elastoinertial shock
waves (Sec. S3 in [19]). Figure 3(c) shows the resulting
profiles of K, P, and T for S with E ¼ 4 × 10−1 at t ¼ 4. D
and R are orders of magnitude smaller than T and are not
shown. The conditionally averaged wave, depicted in
Fig. 3(c), travels from left to right. The T-wave consists
of a high and narrow crest followed by a shallow and wide
trough. We furthermore see that P ≈ 2K and that K and P
are roughly in phase with each other while they lag T by
π=2 in qualitative agreement with the analytical model. The
agreement confirms that the observed flow structures in S
(Movie S1 in [19]) are elastoinertial shock waves.
To further study the elastoinertial nature of the shock

waves observed in Movie S1 in [19], we extract the wave
speed cs from the simulation data using cs ¼ ½h∂2

tΩ∂2
xΩi=

hð∂2
xΩÞ2i�1=2, which is derived in Sec. S2 in [19], and where

Ω ¼ ∂xuy − ∂xux is the fluid vorticity. Figure 3(d) shows
the resulting cs as a function of E at t ¼ 4 (blue) and t ¼ 8

(red). For 10−2 ≲ E ≲ 10−1 the wave speed agrees with the
analytical model cs ∼ ðνα=λÞ1=2 (dashed lines), which is
derived for linear springs (Sec. S1 in [19]). For E ≳ 10−1,
the spring stiffness reduces together with the polymer
extension [Fig. 4(c)], which explains the deviation of the
simulation data from the theoretical prediction.
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FIG. 3. (a) Spatial mean (solid lines) and spatial standard
deviation (dotted lines) of inertial energy K (blue) and elastic
energy P (red) at t ¼ 4. (b) Spatial mean (solid lines) and spatial
standard deviation (dotted lines) of viscous dissipation D (blue),
polymer relaxation R (red) and transfer T from K to P (green) at
t ¼ 4. (c) Profiles of K, P, and T across the elastoinertial shock
waves for S with E ¼ 4 × 10−1 at t ¼ 4. The depicted condi-
tionally averaged wave travels from left to right. (d) Wave speed
cs at t ¼ 4 (blue) and t ¼ 8 (red). The dashed lines correspond to
the theoretical prediction cs ∼ ðνα=λÞ1=2.
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FIG. 4. (a) Energy decay rate between t ¼ 1 and t ¼ 5.5 (blue)
and between t ¼ 5.5 and t ¼ 10 (red). (b) Ratio of elastic energy
and inertial energy at t ¼ 4 using a N2

x ¼ 1282 grid and a forcing
period of tF ¼ 1 (black), ðt; Nx; tFÞ ¼ ð4; 256; 1Þ (red),
ðt; Nx; tFÞ ¼ ð8; 128; 1Þ (blue), and ðt; Nx; tFÞ ¼ ð5; 128; 2Þ
(green). (c) Polymer extension at t ¼ 4. The horizontal dashed
line corresponds to the equilibrium configuration. (d) Spectral
density at t ¼ 4 of inertial energy (solid lines) and elastic energy
(dashed lines) using a 1282 grid. The black, blue, and red curves
correspond to N with E ¼ 0, W with E ¼ 6 × 10−4, and S with
E ¼ 4 × 10−1, respectively.
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Assuming an exponential decay of the total (inertial plus
elastic) energy hKi þ hPi ∼ exp ð−ftÞ, we compute the
decay rate as f¼ log½ðhPiiþhKiiÞ=ðhPifþhKifÞ�=ðtf−tiÞ,
where hKii and hPii are hKi and hPi at t ¼ ti, and hKif
and hPif are the corresponding values at t ¼ tf. Figure 4(a)
shows the resulting f as a function of E for two intervals
ðti; tfÞ ¼ ð1; 5.5Þ and ðti; tfÞ ¼ ð5.5; 10Þ, respectively. The
decay is faster in the earlier interval, but the qualitative
behavior of fðEÞ is identical for both intervals.
The maximum decay rate of f ≈ 0.5 occurs in W at

E ≈ 3 × 10−3, which corresponds to a minimum character-
istic decay time of f−1 ≈ 2. In Figs. 3 and 4 we consider
flow statistics at t ¼ 4, which is sufficiently large that
the flow has developed structures over the full wave
number spectrum (see Fig. 1), and which is sufficiently
small that the energy at t ¼ 4 is at least 14% of the energy
at t ¼ tF.
In S the decay rate decreases while increasing the

polymer concentration, which is equivalent to a drag
reduction effect. Similar as in maximum drag reduction
in turbulent boundary layers [5,22], this drag reduced state
has universal features, where the corresponding flow
structures are independent of the polymer concentration.
This is shown in Fig. 4(b) by the (nearly) constant

hPi=hKi as a function of E in S. In that figure we compare
data at t ¼ 4 using aN2

x ¼ 1282 grid and a forcing period of
tF ¼ 1 (black), ðt; Nx; tFÞ ¼ ð4; 256; 1Þ (red), ðt; Nx; tFÞ ¼
ð8; 128; 1Þ (blue), and ðt; Nx; tFÞ ¼ ð5; 128; 2Þ (green). The
close agreement between these four data sets demonstrates
that the 1282 grid is sufficient to capture the correct physics,
and that the findings of this Letter do not sensitively depend
on the choices for t and tF.
We plot in Fig. 4(d) the wave number k spectrum of K

and of P at t ¼ 4, using a grid of 1282. These results agree
well with those on a 2562 grid, which are shown in Sec. S5
in [19]. The agreement confirms that the 1282 grid is
sufficient to capture the correct physics. For W with E ¼
6 × 10−4 (blue lines), the K spectrum is enhanced only for
relatively large wave numbers (k > 20), while it is hardly
affected for smaller k. For S with E ¼ 4 × 10−1 (red lines)
on the other hand, the K spectrum is enhanced over nearly
the entire k range (k > 4). Interestingly, in S the shape of
theK spectrum approaches that of P over the entire k range.
In Sec. S6 in [19], which includes Ref. [23], we compute

the interscale transfer of K due to inertial stress Il and due
to polymer stress Tl. For N Tl ¼ 0 and Il corresponds to
an upscale energy cascade. ForW the upscale effect of Il is
weakened, and overwhelmed by the downscale effect of Tl.
For S the cascade is still downscale, but with a reduced
strength, as compared to W.
In summary, we have numerically demonstrated that, at

large polymer concentrations, 2D elastoinertial turbulence
consists of elastoinertial shock waves, which transport
energy from large to small scales. This regime has drag

reduction characteristics; i.e., the energy decay rate
decreases when the polymer concentration increases.
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