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We implement a general imaging method by measuring the complex degree of coherence using linear
optics and photon number resolving detectors. In the absence of collective or entanglement-assisted
measurements, our method is optimal over a large range of practically relevant values of the complex
degree of coherence. We measure the size and position of a small distant source of pseudothermal light, and
show that our method outperforms the traditional imaging method by an order of magnitude in precision.
Finally, we show that a lack of photon-number resolution in the detectors has only a modest detrimental
effect on measurement precision and simulate imaging using the new and traditional methods with an array
of detectors, showing that the new method improves both image clarity and contrast.
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Imaging is, at its heart, a multiparameter metrology
problem, where physical characteristics of the object are
encoded as parameters in the quantum state of light.
Quantum metrology studies how to best measure physical
quantities in the quantum regime: particularly the meas-
urement precision of parameters that do not have an
associated quantum observable—such as phase or time
—and estimating the optimal quantum measurement
observable from which the parameter can be estimated
[1]. Of special interest is the estimation of multiple
parameters where the optimal measurement observables
for two or more parameters may not be simultaneously
comeasurable—e.g., when the observables do not com-
mute. Quantum metrology provides bounds on the achiev-
able precisions of these parameters and determines jointly
optimal measurement strategies [2].
It is well known that there are physical limits to the

precision with which an image can be formed. The
Rayleigh-Abbe-Sparrow limit states that the size of the
smallest resolvable features is determined by the ratio of the
wavelength and the numerical aperture. There are ways in
which this limit can be circumvented, for example using
super-resolution techniques that exploit the physical struc-
ture of the object [3–5] or object illumination with
entangled states of light [6–11]. However, in many appli-
cations—for example when the object is very far away—
we cannot directly interact with the object, or illuminate it
with entangled light: the quantum state of the light field is
all that is accessible to the observer. Given a finite size
imaging system in the far field—i.e., systems with a finite
effective numerical aperture—we here investigate the best
way to extract the spatial characteristics of the light source.
Recently, Tsang et al. showed that the far field quantum

state of light retains a significant amount of information
about the separation of two identical incoherent point

sources, even when their angular separation approaches
zero [12]. Moreover, this information can be extracted
with a suitable measurement [13], for example using
spatial-mode demultiplexing [14]. Recently, a series of
experiments demonstrated sub-Rayleigh resolution for two
incoherent point sources, using image inversion interfer-
ometry [15,16], digital holography [17], and TEM01

heterodyne detection [18]. However, the retention of the
spatial information seems to be restricted to highly sym-
metric sources [19], and it is an open question how we can
optimally extract the spatial characteristics of arbitrary
sources. Possible candidates include conventional tele-
scopes, Hanbury Brown–Twiss interferometry [20,21], or
estimating higher-order correlations in the far field [22–24].
In this Letter, we consider the important practical case

where we do not know the light source distribution, and
therefore do not have a simple theoretical model whose
parameters we can estimate. This requires that we measure
quantities with a special relation to the source distribution,
such as the complex degree of coherence (CDC). The van
Cittert–Zernike theorem relates the CDC to the source
distribution via a two-dimensional Fourier transform [25],
which is easy to evaluate. Pearce et al. showed that the
CDC, γðr1; r2Þ ¼ jγjeiϕ, between two points r1 and r2 in
the imaging plane can be measured nearly optimally using
the setup in Fig. 1 [26]: the two main features are the
application of a varying phase, ϕa, to one mode of
incoming light and the measurement using photon-num-
ber-resolving detectors. Given the latter, we label this the
“Count” scheme. Importantly, since the optimal method
involves measurement of noncommuting observables, the
Count scheme represents the optimal experimentally
achievable scheme, and achieves something very close to
the optimal theoretical precision until jγj approaches
approximately 0.8.

PHYSICAL REVIEW LETTERS 123, 143604 (2019)

0031-9007=19=123(14)=143604(6) 143604-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.143604&domain=pdf&date_stamp=2019-09-30
https://doi.org/10.1103/PhysRevLett.123.143604
https://doi.org/10.1103/PhysRevLett.123.143604
https://doi.org/10.1103/PhysRevLett.123.143604
https://doi.org/10.1103/PhysRevLett.123.143604


Here, we experimentally implement the Count scheme,
comparing it to two alternative schemes both of which are
variations of the apparatus in Fig. 1. The first of these is the
two-mode analog to a traditional lensing and intensity
measurement setup: this “Traditional” scheme replaces the
variable phase with a fixed phase. In contrast, the second
scheme retains the variable phase but uses detectors that are
not photon-number resolving: in this “Click” scheme the
detectors merely record an event when one or more photons
are present, similar to avalanche photodiode detectors.
Optimality of a scheme is defined via the mean squared

error (MSE) in the parameters using unbiased estimators.
The quantum Cramér-Rao bound relates the MSE matrix
for these parameters to the quantum Fisher information
matrix determined by the light field captured in the
detectors [26,27]. The quantum Fisher information in turn
determines the optimal measurement observables, leading
to the setup in Fig. 1. While the parameters of interest jγj
and ϕ have noncommuting measurement observables, they
turn out to be jointly measurable [26].
The coherence, CDC, is determined directly from

interference fringes between two spatially separated optical
modes in the far field. Light at positions r1 and r2 acquires a
relative applied phase shift ϕa (using the phase shifter in
Fig. 1), then interferes on a 50∶50 beam splitter, and is
finally detected by photon-number-resolving detectors D1

and D2, with x being the number of photons in detector D1

and y the number of photons in D2. Post selecting on
different photon-number coincidence events ½x; y� gives rise
to different interference fringes, as illustrated in Fig. 2 in
the Supplemental Material [28]. (Note that these calibration
fringes are not used for the experimental estimates in
Figs. 3 and 4).
The phase ϕ of the CDC contains the information about

the position of the source relative to the optical axis
connecting the source and the imaging plane. To see this,

we note that a transversal shift of the source in the direction
parallel to r1 − r2 produces a relative phase shift in the
optical modes at r1 and r2. This results in a translation of
the interference fringes. The phase ϕ of the CDC is equal to

FIG. 1. Schematic for the Count, Traditional, and Click
schemes for estimating the complex degree of coherence
(CDC) of the light field at positions r1 and r2. (This arrangement
provides a general imaging procedure since the CDC is directly
related to the Fourier transformation of the source distribution via
the van Cittert–Zernike theorem). The incoming light fields at r1
and r2 are interfered at a beam splitter, the output of which is sent
to detectors D1 and D2. In the Count scheme the detectors are
photon-number resolving and the phase shift ϕa is random; the
Traditional scheme is similar except the phase is fixed. In the
Click scheme the phase is random but the detectors are not
number resolving, instead recording events if one or more
photons are present.
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FIG. 2. A 10 kHz pulsed 820 nm laser is attenuated with a
neutral density filter (ND1) and focused on a ground glass plate,
the rotation of which turns spatially coherent light into spatially
incoherent (thermal) light. In the far field, the light is collected
into two optical fibers r1 and r2 with a glass plate located in front
of r1. As the plate rotates, it applies a relative phase shift ϕa. Both
arms are connected to a 50∶50 fiber beam splitter (FBS). The
outputs are connected to two Transition Edge Sensors, TES1 and
TES2, which measure incoming photons in the photon-number
basis with single photon-number resolution and near-unit quan-
tum efficiency.

FIG. 3. Count vs Click. Complex degree-of-coherence vs
dataset size: Top—magnitude, jγj. Bottom—phase, ϕ. Each point
is the mean of 50 trials with the shading representing the standard
deviation of the 50 trials. Blue dots and shading are for the Count
scheme and orange dots and shading are for the Click scheme.
For small data sets, the Count scheme has a clear advantage over
the Click scheme; both perform well at large data set sizes.
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the applied phase ϕa at the point where the fringes are all at
extremal values. For example, we can infer from Fig. 2 in
the Supplemental Material that ϕ is slightly less than π for
the calibration dataset (see the Supplemental Material [28]
for more details on the definition and measurement of ϕ).
The magnitude jγj of the CDC contains the information

about the spatial extent of the source, and is equal to the
visibility of the fringes,

jγj ¼ I½x;y�max − I½x;y�min

I½x;y�max þ I½x;y�min

; ð1Þ

where I½x;y�max and I½x;y�min are, respectively, the maximum and
minimum intensity of the interference fringe for detector
coincidence events ½x; y�. To see this,we note that each single
point at the source creates an interference fringe with perfect
visibility and jγj ¼ 1. Incoherent extended sources at differ-
ent positions then create an incoherent superposition of
horizontally translated interference fringes. As the spatial
extent of the source increases, the visibility—and hence

jγj—of the resulting interference fringe decreases. These
relationships are formally expressed in the van Cittert–
Zernike theorem (see the Supplemental Material [28]).
To extract the values of jγj and ϕ from a measured

interference fringe we use the maximum likelihood esti-
mator (MLE), which is asymptotically efficient. This means
that the variance of the MLE asymptotically approaches the
Cramér-Rao bound for large datasets. The MLE optimizes
jγj and ϕ to fit the experimental data to the probability
distribution Prðx; yÞ ¼ fx;yðγ; n̄;ϕaÞ for detecting a coinci-
dence event ½x; y�. This distribution is a function of jγj, ϕ,
the average photon number n̄, and the applied phase ϕa and
is defined explicitly in the Supplemental Material [28].
The experimental apparatus is shown in Fig. 2. Light

from a pulsed 820 nm laser diode is spatially filtered using
a single-mode fiber, and attenuated to produce a train of
weak coherent states with average photon number of
approximately one. The single mode is focused to a waist
at a ground glass plate that rotates at approximately 5 Hz
to create a spatially incoherent light source [29]. The
pseudothermal light emanating from the ground glass is
collected into two single mode fibers, separated by 48 mm
at r1 and r2, and located 595 mm from the ground glass
plate. In front of the fiber at r1 we place a rotatable optical
flat, the angle of which changes the path length of the light
entering the fiber and allows for the application of the
variable phase ϕa. The light entering r1 and r2 is then
interfered on a 50∶50 fiber beam splitter. Bat-ear polari-
zation controllers in the fibers ensure that the polarizations
in both inputs are kept equal.
The two outputs of the fiber beam splitter are sent to

Transition Edge Sensors (TES), which are calorimeters
measuring photon energy and provide true photon-number
resolution when detecting monochromatic light. They also
provide near-unity intrinsic detection efficiency and zero
intrinsic dark counts, making them ideally suited for low-
light experiments. The TES output yields a time and
number resolved detection record [30].
Our setup constitutes an interferometer measuring opti-

cal coherence between r1 and r2. Stable interferometry
requires that mechanical fluctuations in the position of the
optical fibers be kept within λ=5 ≈ 40 nm. To achieve this,
we isolate the optical fibers and optical flat within an
acrylic box, with a small hole towards the laser diode to let
light into the interferometer. The entire experiment is then
isolated further in another box on a floating optical table.
Before comparing the precision of the Count scheme to

the Traditional and Click schemes we discuss the accuracy
of our estimates of jγj and ϕ. We determine this via two
methods: (i) we compare the MLE values of jγj and ϕ to the
values calculated directly from the fringes; (ii) we use the
MLE for jγj and the van Cittert–Zernike theorem to
estimate the diameter of the source, and compare it to a
directly measured value of the source diameter. We
calculated jγj ¼ 0.096 using Eq. (1) and we found

FIG. 4. Count vs Traditional. Complex degree-of-coherence vs
dataset size: Top—magnitude, jγj. Bottom—phase, ϕ. Each point
is the mean of 20 trials with the shading representing the standard
deviation of the 20 trials. Blue dots and shading are for the Count
scheme and red dots and shading are for the Traditional scheme.
The Count scheme clearly outperforms the Traditional scheme for
all dataset sizes.
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ϕ ¼ 4.11 rad from averaging the applied phase, ϕa, at the
extremal points for all fringes in the photon-number
coincidence basis. For method (i), the visibility jγj was
calculated from the average of only the [0,1] and [1,0]
fringes. The higher order fringes were not included due to
the presence of increased noise. Outliers in the data would
inflate their visibility. The MLE does not suffer from this
drawback. The method (i) calculated values for both jγj and
ϕ are consistent with the results of the MLEs for all three
schemes.
For method (ii) we measured the source diameter, which

is equal to the spot size of the beam incident on the ground
glass plate, see Fig. 2. The ground-glass plate was placed
within �0.25 mm of the beam waist. (The uncertainty in
position is due to a small amount of precession of the
rotating plate). Using a beam profiler we measured the spot
size at the waist to be 15.3� 0.1 μm and the spot size
0.25 mm from the waist to be 18.0� 0.1 μm. We therefore
expect to estimate a source diameter in the range
15.3–18.0 μm. Using the van Cittert–Zernike theorem
and our estimated visibility we estimate the source diameter
to be 16.5� 0.5 μm, agreeing well with the predicted range
of diameters (see the Supplemental Material [28] for
details).
Table I summarizes our estimates of the complex degree-

of-coherence magnitude, jγj, and phase, ϕ, using the Count,
Traditional, and Click schemes, averaged over dataset sizes
from 100 to 10 000 points. For jγj, the Count scheme is,
respectively, 7.3 and 1.1 times more precise than the
Traditional and Click schemes; for ϕ, the Count scheme
is, respectively, 4.0 and 1.4 times more precise than the
Traditional and Click schemes. Moving beyond these
averages, for the 10 000 point dataset, the Count scheme
is over an order-of-magnitude more precise for jγj, and four
times more precise for ϕ, than the Traditional scheme.
These results also apply to comparisons between the Click
and Traditional schemes since Fig. 3 displays that the
Count and Click schemes are of approximately equivalent
precision for larger dataset sizes. These results demonstrate
that the Count and Click schemes are significantly better
than the Traditional scheme, corroborating the result by
Pearce et al. that the Count scheme is near-optimal among

noncollective measurements [26]. Estimates for jγj and ϕ
based on various data set sizes are shown in Figs. 3 and 4.
They reveal that the Count scheme converges more quickly
around the true values of jγj and ϕ than the Traditional
scheme.
In the Traditional scheme we see a consistent bias in the

jγj value estimates, relative to the Count or Click scheme.
This is due to the uncertainty in jγj for the Traditional
scheme being greater than the difference between the true
jγj, 0.096, and the lower limit of jγj, zero. This results in the
truncation of some MLE estimates smaller than jγj, causing
inflation of the mean jγj estimation.
Practical application of the Count scheme to the imaging

of objects with arbitrary spatial configurations will require
a two-dimensional array of photon-number-resolving
detectors and phase varying elements. This setup could
be realized by pairing a recent implementation of an array
of photon-number-resolving detectors [31] along with a
liquid crystal spatial light modulator to dynamically vary
the phase of the light entering each detector. A recon-
structed image is then formed by measuring the CDC
between all detector pairs in the array and calculating the
source distribution via the van Cittert–Zernike theorem. To
demonstrate this method we simulated imaging of a
complex object with a 26 × 26 array of detectors using
the Count and Traditional methods (see Fig. 5). The
simulation shows that the Count scheme results in images
with improved contrast and clarity over traditional imaging
methods. Results from the Click scheme (see Fig. 3)
shows that, for large data sets, substituting the array
of photon-number-resolving detectors for an array of

TABLE I. Complex degree-of-coherence magnitude, jγj, and
phase, ϕ, for the Count, Traditional, and Click schemes. The size
of the spot is a, the distance between r1 and r2 is d, the wave
number is k, the distance from the source to the collection points
isD, and the angle to the centre of the spot is θ (see Supplemental
Material [28]). Values are the average for datasets of sizes 1000 to
10 000.

Scheme jγj ¼ j sin cðkda=2DÞj ϕ ¼ kdθ

Count 0.096� 0.022 4.32� 0.25
Click 0.095� 0.025 4.29� 0.35
Traditional 0.20� 0.16 4.5� 1.0

FIG. 5. Simulated comparison of images reconstructed using
the Count and Traditional schemes for a 26 × 26 array of
detectors. The Click scheme is not shown due to it, visually,
looking very similar to the Count scheme. Top left: the original
image before reconstructive imaging. Top right: reconstructed
image in a noiseless regime, revealing the theoretical limits of the
method. Bottom left: reconstructed image based on our Count
scheme. Bottom right: reconstructed image based on the Tradi-
tional scheme. A detailed description of the simulation is given in
the Supplemental Material [28].
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non-photon-number-resolving detectors does not result in a
large decrease in precision, and therefore may be a more
economical alternative.
The Count and Click schemes, in contrast to intensity

methods such as Hanbury Brown–Twiss interferometry,
allows for estimation of both jγj and ϕ, and hence total
reconstruction of the source image (see Fig. 5). This,
combined with their optimality in precision, their relative
simplicity, and the ubiquity of interferometers in modern
sensing and imaging technology, means that the Count and
Click schemes have many potential applications. For
example in astronomy these schemes open avenues to
improved imaging of stellar bodies, with the Count scheme
having a particular advantage due to its precision at low
dataset sizes. Extension of the scheme to multiport inter-
ferometry [32] and the associated phase super-resolution
may make possible imaging of previously inaccessible
smaller bodies such as exoplanets, moons, and asteroids. In
biology and medical imaging—through incorporation into
interferometric reflectance schemes that detect reflected
thermal light shone onto the source [33]—the Count and
Click schemes can provide optimal imaging of small
biological entities.
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