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A recent experiment has observed the antiferromagnetic interaction between the ground state 1S0 and
the metastable state 3P0 of 171Yb atoms, which are fermionic. This observation combined with the use of
state-dependent optical lattices allows for quantum simulation of the Kondo model. We propose that in this
Kondo simulator the anomalous temperature dependence of transport, namely, the Kondo effect, can be
detected through quench dynamics triggered by the shift of a trap potential. For this purpose, we improve
the numerical efficiency of the minimally entangled typical thermal states (METTSs) algorithm by
applying additional Trotter gates. Using the improved METTSs algorithm, we compute the quench
dynamics of the one-dimensional Kondo model at finite temperatures quasiexactly. We find that the
center-of-mass motion exhibits a logarithmic suppression with a decrease in the temperature, which is a
characteristic feature of the Kondo effect.
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Orbital degrees of freedom are a fundamental element for
understanding physics of various condensed matter sys-
tems, including heavy-fermion materials [1,2], transition
metal oxides [3–5], iron pnictides [6–8], and compound
semiconductors [9,10]. In these systems, the multiorbital
character, together with the spin degrees of freedom and
strong interparticle interactions, leads to the emergence of
magnetism, superconductivity, excitonic condensation, and
the Kondo effect. It is widely believed that the essence of
some of these properties can be extracted by analyzing the
two-orbital Anderson- and Kondo-type models, in which
delocalized fermions in one orbital exchange their spins
with localized fermions in the other orbital. However,
accurate simulation of these models with classical resour-
ces is, in general, intractable because of the exponential
growth of the Hilbert space and the minus sign problem in
quantum Monte Carlo simulations.
An alternative approach for analyzing the prototypical

two-orbital models is analog quantum simulation [11],
using optical lattices loaded with ultracold gases [12–14]. It
has been proposed that optical-lattice quantum simulators
(OLQSs) of the two-orbital models can be realized with the
use of fermionic alkaline-Earth-like atoms (AEAs) [15–19],
such as strontium [20] and ytterbium [21,22]. A remarkable
advantage of AEAs over alkali atoms is the existence of the
electronically excited state 3P0 or 3P2 with a long lifetime,
which can be coupled to the ground state 1S0 via an
ultranarrow clock transition. Riegger et al. indeed have
used a state-dependent optical lattice to create a two-orbital
fermionic quantum gas of 173Yb [23], in which atoms in the
1S0 (3P0) state play a role of delocalized (localized) fermions.
Moreover, Ono et al. have reported the observation of

antiferromagnetic spin-exchange interaction between the
1S0 and 3P0 states of 171Yb [24]. Since 171Yb atoms in
the 1S0 state hardly interact with each other [25], their two-
orbital system in a state-dependent optical lattice naturally
simulates the Kondo model.
One of the most important targets of the OLQS of the

Kondo model is the Kondo effect [26–31], in which a
localized fermion forms a many-body spin-singlet state
with delocalized fermions when the temperature is lowered.
The formation of such Kondo singlets causes the anoma-
lous increase of the resistance with a decrease in the
temperature. The Kondo effect is thought to be a key
concept for understanding rich quantum phases and phase
transitions of the Kondo lattice model represented by a
Doniach phase diagram [32]. Since transport properties of
trapped quantum gases have been often investigated by
measuring their center-of-mass (c.m.) motion induced in
response to a sudden displacement of the trapping potential
[33–39], it is likely that the Kondo effect in the OLQS of
the Kondo model will be detected via such simple transport
measurements. However, accurate theoretical predictions
on the c.m. dynamics have never been made because of
the difficulties in calculating real-time evolution of the
quantum many-body system with two orbitals at finite
temperatures.
In this Letter, we develop a numerical method that

overcomes such difficulties in order to show that the
Kondo effect of the Kondo OLQS can be indeed detected
by measuring the c.m. motion of the delocalized fermions
after the trap displacement. Specifically, we restrict our-
selves to one-dimensional (1D) systems, in which matrix
product states (MPSs) serve as an efficient description of
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states with relatively low energy [40–42], and modify the
finite-temperature algorithm using the minimally entangled
typical thermal states (METTSs) [43,44]. Our modified
METTSs algorithm includes additional Trotter gates and
allows for efficient simulations of systems with an Abelian
symmetry, such as the Hubbard and Kondo models. Using
the modified METTSs, we compute the finite-temperature
dynamics of the Kondo model with the antiferromagnetic
interaction and find that, when the temperature decreases,
the maximum c.m. speed during the dynamics logarithmi-
cally decreases; i.e., the transport exhibits a logarithmic
suppression, which is a characteristic feature of the Kondo
effect. We also analyze the fully spin-polarized system and
the ferromagnetic Kondo model, in which the Kondo effect
does not occur [45], as references to be compared with the
antiferromagnetic case. The logarithmic suppression of the
transport is found to be absent in these two cases.
Model and method.—We consider an ultracold mixture

of 171Yb atoms, which are fermionic, in the 1S0 and 3P0

states confined in a combined potential of optical lattices
and a parabolic trap. We assume that the transverse optical
lattice is sufficiently deep such that the system can be
regarded to be spatially 1D. The longitudinal optical lattice
is state dependent in a way that an atom in the 3P0 state
is localized at j ¼ 0, while the lattice for 1S0 atoms is
modestly deep for the tight-binding approximation to be
valid, but is shallow enough to make 1S0 atoms delocalized.
This system is well described by the 1D Kondo model
[26,46] with a parabolic trap term

Ĥ ¼ −J
XL−1

i¼−L

X

σ

�
ĉ†iσ ĉiþ1σ þ H:c:

�
þ V ŝi¼0 · Ŝimp

þ w
XL

i¼−L

X

σ

ði − xc=aÞ2n̂iσ ð1Þ

and can be regarded as an OLQS of the model. The
total number of sites is 2Lþ 1. Here, ĉ†iσ (ĉiσ) creates
(annihilates) a 1S0 fermion with spin σ at site i, and
n̂iσ ¼ ĉ†iσ ĉiσ. ŝi ¼ ðŝxi ; ŝyi ; ŝzi Þ are spin operators of a 1S0
fermion at site i and each component is defined as ŝγ ¼
ð1=2ÞPαβ ĉ

†
iασ

γ
αβĉiβ with the Pauli matrices σγ . Ŝimp ¼

ðŜximp; Ŝ
y
imp; Ŝ

z
impÞ are spin operators of the impurity fermion

at site 0. J denotes the hopping amplitude of 1S0 fermions,
V the spin-exchange interaction between 1S0 and 3P0

fermions, w the amplitude of the trap, xc the position of
the trap center, and a the lattice constant.
The interaction between 171Yb atoms in the 1S0 state can

be safely ignored because it is very small (the s-wave
scattering length is as ¼ −0.15 nm [25]). It is worth noting
that there exists direct interaction between 1S0 and 3P0

fermions, which is given by Vdð
P

σ n̂i¼0σÞn̂imp [24]. Since
the number of a 3P0 fermion n̂imp is fixed to be unity, the

direct interaction is equivalent to a barrier potential at site 0.
We assume that a laser beam is focused on site 0 to cancel
the direct interaction. Such control can be made in experi-
ment, e.g., by using a digital micromirror device [47,48].
With this Hamiltonian (1), we calculate the time evolution
of the c.m. position x̂G ¼ P

L
i¼−L;σ ian̂iσ=N with the total

particle number of 1S0 fermions N ¼ P
iσhn̂iσi and the c.m.

velocity v̂G ¼ −ði=ℏÞ½x̂G; Ĥ�, followed by the shift of a trap
center xc from 3a to 0 at finite temperatures as depicted
in Fig. 1.
In order to numerically simulate dynamics of quantum

many-body systems at finite temperatures, we use MPSs
and the METTSs algorithm. There is another option for
computing such finite-temperature dynamics, namely, the
purification method [49–52]. However, since in the puri-
fication method the density matrix of a system is repre-
sented as a pure state by squaring the dimensions of local
Hilbert spaces, it is not very efficient for our two-orbital
system with large local Hilbert spaces.
In the METTSs algorithm, the thermal expectation value

at an inverse temperature β ¼ 1=kBT is calculated as

hÔiβ ¼
Tr½e−β

2
ĤÔe−

β
2
Ĥ�

Z

¼
X

i

hije−βĤjii
Z

hije−β
2
ĤÔe−

β
2
Ĥjii

hije−βĤjii ; ð2Þ

and the summation over orthonormal basis jii is performed
by the Markov-chain Monte Carlo (MCMC) sampling. In
the ordinary METTSs algorithm [43,44], the transition
probability of the MCMC method from a state jii to jji is
given by

pi→j ¼
jhjje−β

2
Ĥjiij2

hije−βĤjii : ð3Þ

FIG. 1. The solid line represents the density distribution of the
delocalized fermions of the Kondo model in the stationary state
for N ¼ 9, total magnetization M ¼ 0, V=J ¼ 1, xc ¼ 3a, and
βJ ¼ 75. The localized fermion is located at i ¼ 0. The dashed
and dotted lines represent the parabolic trap potential before and
after the displacement of its center.
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With this transition probability, the METTSs algorithm
suffers from a severe autocorrelation problem at high
temperatures, as easily inferred from the β → 0 limit.
This autocorrelation problem can be eliminated by break-
ing the total particle number conservation. However, the
breaking of the conservation of particle number leads to
significant increase of computation time in dynamics.
Hence, we introduce the following transition probabilities
for odd steps,

podd
i→j ¼

jhjj½ÛðτÞ�ne−β
2
Ĥjiij2

hije−βĤjii ð4Þ

and

peven
i→j ¼ jhjje−β

2
Ĥ½Û†ðτÞ�njiij2

hij½ÛðτÞ�ne−βĤ½Û†ðτÞ�njii ð5Þ

for even steps. Here, τ is a parameter that characterizes the
Trotter gates,

ÛðτÞ ¼ e−iτĤevene−iτĤodd ; ð6Þ

and n is an integer. For Ĥeven and Ĥodd, one can take any
Hermitian operators as long as they respect the conserva-
tion of the particle number. We use the products of local
Hilbert states in some symmetric sector as the orthonormal
basis jii. This approach is a variant of the symmetric
METTSs algorithm [53] with symmetric bases jii and
½Û†ðτÞ�njii, which are very flexible because of the param-
eter τ and the freedom to choose Ĥeven and Ĥodd. Moreover,
the implementation of our approach is quite easy since it
requires only the applications of the Trotter gates in
addition to the ordinary METTSs algorithm. With the
transition probabilities, we can reduce the autocorrelation
time by increasing τ and n without breaking the conserva-
tion. However, since the bond dimensions of MPSs
increase with τ and n, some tuning of the parameters
may be required for efficient simulations. The validity of
our approach and some benchmark results are shown in the
Supplemental Material [54].
The dynamics of the thermal expectation value is obtained

by representing the operator Ô in the Heisenberg picture
ÔðtÞ ¼ eitĤ

0=ℏÔe−itĤ
0=ℏ with the Hamiltonian Ĥ0 after a

quench. Both imaginary and real-time evolutions of MPSs in
this study are performed with the time-evolving block
decimation method [55–58] using the optimized Forest-
Ruth-like decomposition [59]. Throughout this study, we
set w=J ¼ 0.001, the number of delocalized fermions N to
nine, L ¼ 75, τ ¼ 1.0=J, n ¼ 4, and Ĥeven (Ĥodd) is the
Hamiltonian linking even (odd) bonds of the Kondo model
(1). On site terms are equally divided into Ĥeven and Ĥodd.
The truncation error is set to 10−10 in imaginary-time

evolution and 10−8 in real-time evolution, and the bond
dimensions are allowed to increase up to 4000.
Antiferromagnetic case.—We first consider the case

that the spin-exchange interaction is antiferromag-
netic and the total magnetization is zero, i.e., V > 0 and
M ¼ hŜzimp þ

P
i ŝ

z
i i ¼ 0. In order to identify a temperature

range in which the Kondo effect occurs, we show
in Fig. 2 the spin correlation, Re

P
ihŜþimpŝ

−
i i ¼P

ihŜximpŝ
x
i þ Ŝyimpŝ

y
i i, for V=J ¼ 1 (blue solid line) and

5 (orange dashed line), as a function of the temperature. It is
clearly seen that when the temperature decreases, the spin
correlation grows logarithmically, implying the formation
of a many-body spin singlet.
From these spin correlations, we can extract an important

energy scale called Kondo temperature TK . At T ≲ TK , the
spin-singlet correlation grows such that it makes significant
contributions to physical quantities. In this Letter, we
define the Kondo temperature as the temperature at which
the spin correlation, Re

P
ihŜþimpŝii, becomes −0.25,

namely, the half of the maximal singlet value. As discussed
in the Supplemental Material [54], the Kondo temperatures
given by this definition behave similar to the ordinary
Kondo temperatures obtained by the perturbative renorm-
alization group analysis [60], at least around V=J ¼ 1. The
Kondo temperature at V=J ¼ 1 is around 0.1J=kB and the
estimated size of the Kondo screening cloud is around 10a
[54,61]. In the following calculations for real-time dynam-
ics at V=J ¼ 1, we take 7.5 ≤ βJ ≤ 75.0, which corre-
sponds approximately to 0.1 ≤ T=TK ≤ 1. Moreover,
itinerant atoms are distributed over 40 sites (see Fig. 1),
which is sufficiently larger than the Kondo screening
length. Thus, our setting is adequate for observing the
Kondo physics.
Notice that the Kondo temperature TK ∼ 0.1J=kB at V=J

is remarkably lower than the lowest temperature, T ¼
0.25J=kB, achieved in experiments with ultracold fermions
[48]. We emphasize that the Kondo temperature can be

FIG. 2. The spin correlation versus temperature in steady states
for V=J ¼ 1 (blue solid line) and 5 (orange dashed line). Error
bars indicate 1σ uncertainty. The horizontal dotted line represents
Re

P
ihŜþimpŝ

−
i i ¼ −0.25, the criterion we used to define the

Kondo temperature. We set M ¼ 0 and xc ¼ 0.
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significantly lifted by increasing V=J. For instance, Fig. 2
shows that TK at V=J ¼ 5 is well above T ¼ 0.25J=kB.
Nevertheless, we set V=J ¼ 1 for computations of real-time
dynamics because the numerical cost is much more
expensive for higher temperatures.
Figure 3 shows the time evolution of the c.m. positions

and velocities at several temperatures after the shift of the
trap center from xc ¼ 3a to xc ¼ 0. The c.m. positions and
velocities are, respectively, normalized by hx̂Gð0Þi and
ωfhx̂Gð0Þi, where ωf ¼ 2

ffiffiffiffiffiffi
wJ

p
=ℏ denotes the dipole oscil-

lation frequency of free particles [62]. ωfhx̂Gð0Þimeans the
maximum speed during the undamped dipole oscillation
starting with the position hx̂Gð0Þi. In Fig. 3, we see that the
transport is significantly suppressed when the temperature
decreases. This tendency is reminiscent of the Kondo
effect, in which the resistance increases with a decrease
in the temperature.
Fully spin-polarized and ferromagnetic cases.—In order

to support our argument that the suppression of transport is
a manifestation of the Kondo effect, we also compute the
quench dynamics of the following two systems, which are
widely known not to exhibit the Kondo effect [45]. The first
example is a fully spin-polarized system (M ¼ 5), in which
the spin-exchange interaction term in Eq. (1) acts as a
simple potential barrier term. In this system, we completely
prohibit spin-flip processes that are essential for the Kondo
effect [26]. Figure 4(a) represents the dynamics of the
normalized c.m. velocities in the fully spin-polarized
system. Except for the total magnetization M, any other
settings are equivalent to those of the dynamics shown
in Fig. 3. In contrast to the M ¼ 0 case in Fig. 3(b), the
normalized velocities in Fig. 4(a) do not show visible
temperature dependence. This behavior is consistent with
the formula of the resistance, R ∝ T2K−2, obtained from the
Tomonaga-Luttinger (TL) liquid theory, where K denotes
the Luttinger parameter for the charge sector and K ¼ 1 for
noninteracting fermions [63–66].
The second example is the case in which the spin-

exchange interaction is ferromagnetic. Specifically, we take
V=J ¼ −1 and M ¼ 0. Notice that, while there exists the
ferromagnetic Kondo effect in 1D for K < 1 [45,67], this
is not the case for noninteracting delocalized fermions

consideredhere. This happens because they are also described
by the TL liquid theory with K ¼ 1. Figure 4(b) shows
the time dependence of the normalized c.m. velocities in
the ferromagnetic Kondo model. Except for the sign of V=J,
any other settings are equivalent to the settings in Fig. 3.
As in the fully spin-polarized case, the normalized c.m.
velocities in the ferromagnetic Kondo model do not exhibit
visible temperature dependence, and this is also consistent
with R ∝ T2K−2.
In order to discuss the temperature dependence of the

transport more quantitatively, we plot the quantity R̃ ¼
1 −maxtjhv̂GðtÞij=½ωfhx̂Gð0Þi� in Fig. 5. As shown in the
Supplemental Material [54], R̃ is approximately propor-
tional to the resistance R under the assumption that R̃ ≪ 1
and is suited to characterizing the transport. In Fig. 5, we
see that the temperature dependence of the transport is
only visible in the antiferromagnetic Kondo model with
spin-flip processes (blue solid line). We emphasize that the
horizontal axis of Fig. 5 is logarithmic scale; R̃ of the
antiferromagnetic Kondo model exhibits a logarithmic
growth with a decrease in the temperature, which is a
characteristic feature of the Kondo effect. Specifically, the
“resistance” R̃ increases by around 1.7 times when the

(a) (b)

FIG. 3. Time evolution of the normalized c.m. (a) positions and
(b) velocities for several temperatures. We set V=J ¼ 1 and
M ¼ 0. The shaded regions are 1σ uncertainty of trajectories.

(a) (b)

FIG. 4. Time evolution of the normalized c.m. velocities in the
(a) fully spin-polarized system with V=J ¼ 1 and in the (b) ferro-
magnetic Kondo model with V=J ¼ −1.

FIG. 5. Temperature dependence of R̃ ¼ 1 −maxtjhv̂GðtÞij=
ðωfhx̂Gð0ÞiÞ. The solid, dashed, and dashed-dotted lines represent
the antiferromagnetic Kondo (M ¼ 0 and V=J ¼ 1), fully spin-
polarized (M ¼ 5 and V=J ¼ 1), and ferromagnetic Kondo
(M ¼ 0 and V=J ¼ −1) systems. Error bars indicate 1σ
uncertainty.
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temperature decreases from T ∼ TK to 0.1TK . Strictly
speaking, we observe only the lower temperature side 0.1≲
T=TK ≲ 1 of the expected logarithmic dependence [68,69].
For the higher temperature side 1≲ T=TK ≲ 10, it requires
a very expensive numerical cost. In this sense, corrobo-
rating the logarithmic dependence in the higher temperature
region will be a suitable target of OLQS experiments. We
suggest that observation of the logarithmic temperature
dependence serves as a smoking-gun signature of the
Kondo effect in the OLQS of the Kondo model.
Summary.—In order to propose an experimental way for

observing the Kondo effect with ultracold alkaline-Earth-
like atoms in optical lattices, we numerically simulated the
finite-temperature dynamics of the one-dimensional Kondo
model by using the quasiexact METTSs algorithm based
on matrix product states. We found that when the spin-
exchange interaction is antiferromagnetic, the c.m. motion
after a sudden displacement of the trap potential is sup-
pressed logarithmically with a decrease in the temperature.
In contrast, it was shown that such suppression of the
transport is absent in the ferromagnetic Kondo model or the
fully spin-polarized system. These findings convincingly
indicate that the Kondo effects in ultracold atoms are
detectable via the simple transport measurement.
We also improved the numerical efficiency of the

METTSs algorithm without breaking the total particle
number conservation by the application of the Trotter gates.
The modified METTSs algorithm can be applied to other
systems for accurately analyzing static and dynamical
properties at finite temperatures, such as the spectral
functions [70] and the out-of-time ordered correlations [71].
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