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We present the three-pion spectrum with maximal isospin in a finite volume determined from lattice
QCD, including excited states in addition to the ground states across various irreducible representations at
zero and nonzero total momentum. The required correlation functions, from which the spectrum is
extracted, are computed using a newly implemented algorithm which speeds up the computation by more
than an order of magnitude. On a subset of the data we extract a nonzero value of the three-pion threshold
scattering amplitude using the 1=L expansion of the three-particle quantization condition, which
consistently describes all states at zero total momentum. The finite-volume spectrum is publicly available
to facilitate further explorations within the available three-particle finite-volume approaches.
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Introduction.—Lattice QCD calculations of scattering
amplitudes have matured significantly over the last decade
owing to marked increases in available computational
capacity and improved algorithms. Awidely used approach
for constraining scattering observables from simulations
relies on precise measurements of the interacting energy
levels of QCD in a finite volume, which encode hadron
interactions via the shifts from their noninteracting values
[1–5] (see Ref. [6] for a survey of extensions of the
formalism and numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a large
abundance of lattice data is currently available for scatter-
ing of two hadrons (e.g., ππ scattering in all three isospin
channels [7–31], see also Refs. [32,33] for results using a
potential-based approach), these calculations are formally
restricted to energies below thresholds involving three or
more hadrons due to the use of a formalism for relating
finite-volume spectra to scattering amplitudes that is
limited to two-hadron scattering. This limitation has
precluded a proper lattice QCD study of systems involving
three or more stable hadrons at light pion masses, e.g., the
Roper resonance which decays to both two- and three-
particle channels, theωð782Þ decaying to three pions, many
of the X, Y, and Z resonances, and three-nucleon inter-
actions relevant for nuclear physics.

Following the demonstration that the finite-volume
spectrum is determined by the infinite-volume S matrix,
even in the presence of three-particle intermediate states
[34], significant progress has been made in developing the
necessary formalism to interpret the three-particle finite-
volume spectrum, both by extending the two-particle
derivation to include three-hadron states [35–38], as well
as through alternative approaches [39–43] (for a review see
Ref. [44]) [45]. Thus, although the three-particle formalism
is quite mature—including numerical explorations of the
corresponding quantization conditions [49–51]—data for
three-particle finite-volume QCD spectra are lacking, since
previous lattice QCD calculations have been restricted to
the extraction of multimeson ground states at rest [52–54].
Recently, a first calculation of finite-volume spectra includ-
ing three-particle energies was carried out in the b1 system,
whose results are however not yet amenable to an inter-
pretation in the present three-particle formalisms [55].
Hence no comprehensive data exist to apply the available
finite-volume formalisms.
We fill this gap by providing the two-pion and three-pion

spectra with maximum isospin in various irreducible
representations (irreps) at zero and nonzero total momen-
tum in the elastic region, i.e., for center-of-mass energies
Ecm=mπ below 4 and 5 for isospin I ¼ 2 and I ¼ 3,
respectively. Our analysis of a subset of the data indicates
sensitivity to the three-pion interaction at the current level
of precision. In order to facilitate a more detailed explora-
tion, possibly including the effect of higher partial waves
[35,36,43,56], the spectrum data are made public, including
all correlations.
A technical challenge concerns the growing number

of Wick contractions required to compute correlation
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functions of suitable interpolating operators—from which
the spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out
recently [57] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the Δ channel [58].
While Refs. [59–64] investigated efficient contraction
algorithms at the quark level, we employ the stochastic
variant [65] of distillation [66] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce the
operation count required to evaluate all contractions, we
use a method which is well-known in quantum chemistry
[67–69] and has attracted renewed interest in the context of
tensor networks [70]. The proposed optimization achieves a
speed up by more than an order of magnitude, can be
readily used for general physical systems (e.g., three-meson
systems at nonmaximal isospin and two-baryon systems),
and its implementation is publicly available [71].
This Letter is organized as follows: We first discuss

the interpolating operators employed and construction of
their correlation functions, followed by a description
of the ensemble used in this work. Subsequently, the
finite-volume spectra and extraction of two- and three-
pion scattering parameters from a subset of the data are
presented.
Interpolating operators: Lattice simulations of QCD in

a cubic box break the infinite-volume SOð3Þ rotational
symmetry. The spectrum in finite volume is customarily
extracted employing interpolating operators which trans-
form irreducibly under the symmetries of a cubic spatial
lattice, i.e., the octahedral group Oh for zero total momen-
tum P ¼ 0 and the corresponding little groups for P ≠ 0
[15,72]. Correlation functions of such interpolators access
only the sub-block of the finite-volume Hamiltonian
corresponding to the same irrep, thus greatly simplifying
the determination of the spectrum and the subsequent
scattering-amplitude analysis.
We employ the simplest single-pion operator destroying

a three-momentum p given by

πpðtÞ ¼
X
x

e−ip·xd̄ðx; tÞγ5uðx; tÞ: ð1Þ

This operator transforms in the A−
1u and A−

2 irrep for zero
and nonzero momentum, respectively, where the super-
script specifies the G parity.
Two-pion interpolators which transform according to the

irrep Λ of the little group of total momentum P are obtained
by forming appropriate linear combinations of two single-
pion interpolators with momenta p1 þ p2 ¼ P,

ππðP;ΛÞðtÞ ¼ cðP;ΛÞp1;p2
πp1

ðtÞπp2
ðtÞ: ð2Þ

The relevant Clebsch-Gordan coefficients cðP;ΛÞp1;p2
were

worked out in Ref. [72] (see also Ref. [15]) and used
previously to study ππ scattering [22,29].
Three-pion interpolators are obtained by iterating this

process, i.e., by first coupling two of the pions into an
intermediate irrep, then using the Clebsch-Gordan coef-
ficients again to obtain operators transforming according to
one of the total irreps of interest,

πππðP;ΛÞðtÞ ¼ cðP;ΛÞp1;p2;p3
πp1

ðtÞπp2
ðtÞπp3

ðtÞ: ð3Þ

Because of the weak interaction in I ¼ 2 ππ scattering,
which is the only relevant subprocess for this work, the
more elaborate operator construction discussed in Ref. [55]
is not required. The interpolators we use in this work are
listed in the Supplemental Material [73].
Correlation function construction: Quark propagation

is treated using the stochastic LapH method [65] by first
obtaining smeared solutions of the Dirac equation,

φ½r;d� ¼ SD−1ϱ½r;d�; ð4Þ

for stochastic quark-field sources ϱ½r;d� with noise index
r ¼ 1;…; Nη, dilution [74,75] index d ¼ 1;…; Ndil, and
where S is the LapH smearing kernel, formed from the Nev
lowest eigenvectors of the three-dimensional covariant
Laplacian. Next, useful intermediate quantities are the pion
source and sink functions [65]

M½r1;r2;d1;d2�
p ðtÞ ¼ −

X
x

e−ip·xϱ½r1;d1��aαxt ϱ½r2;d2�aαxt ;

M̄½r1;r2;d1;d2�
p ðtÞ ¼

X
x

e−ip·xφ½r1;d1��
aαxt φ½r2;d2�

aαxt ; ð5Þ

with summed color index a and spin index α, and two open
noise and dilution indices. In terms of these meson
functions, the single-pion correlation function on a single
gauge configuration is obtained by the average over noise
combinations fr1; r2g [65],

Cπpðtf−tsÞ∝−
X
fr1;r2g

M̄½r1;r2;d1;d2�
p ðtfÞM½r1;r2;d1;d2��

p ðtsÞ; ð6Þ

with proper normalization given by the number of noise
combinations used to perform the average.
For a given momentum, pair of source and sink time ts

and tf, and noise combination, Eq. (6) is a tensor
contraction over dilution indices of two rank-2 tensors
with index range Ndil. Two- and three-pion correlation
functions with maximal isospin can be computed using the
same building blocks [65] and involve tensor contractions
governed by all possible Wick contractions of four and six
rank-2 tensors, respectively.
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The number of Wick contractions grows factorially as
more pions are included [52], and the different topologies
of diagrams for three-pion correlation functions in the
sector of maximal isospin are shown in Fig. 1. However,
across the relevant diagrams there is a lot of redundancy
which can be exploited systematically to reduce the number
of arithmetic operations required for their evaluation. In
particular, all diagrams required for the computation of I ¼
2 two-pion correlation functions appear as subdiagrams of
I ¼ 3 three-pion correlation functions.
The algorithm to automatically perform the operation-

count minimization is described in the Supplemental
Material [73] together with a detailed example. For the
evaluation of the correlation functions required in this work
we achieve a speed up by roughly a factor of 15.
Ensemble details: The results in this work are based on

the D200 ensemble generated through the CLS effort [76]
with Nf ¼ 2þ 1 quark flavors at a pion mass mπ ≈
200 MeV and lattice spacing a ≈ 0.064 fm [77]. The
ensemble and measurement setup is detailed in Table I.
In order to ensure a Hermitian matrix of correlation
functions despite the use of open boundary conditions in
the temporal direction [78], our interpolating operators are
always separated from the temporal boundaries by at least
ts, where mπts ¼ 2.2.
Pion-pion scattering in the isovector channel has been

investigated on this ensemble previously [29], and statistics
subsequently improved considerably to provide spectro-
scopic information for the determination of the hadronic
vacuum polarization on the same ensemble [80]. The pion

functions are re-used from that work, and hence no addi-
tional meson functions or solutions of the Dirac equation
have to be computed.
Analysis strategy: The procedure to extract the finite-

volume spectrum from a matrix of correlation functions
CijðtÞ in a given irrep is discussed in detail in Ref. [22] and
we use the analysis suite [81] developed in Ref. [29].
We solve a generalized eigenvalue problem [4,82,83]

for a fixed reference time and diagonalization time
ðt0 ¼ 5a; t� ¼ 10aÞ, corresponding to roughly 0.32 and
0.64 fm in physical units [77], in order to extract not only
the ground state but also excited states in most irreps.
Results from different ðt0; t�Þ are indistinguishable, pre-
sumably due to the weak interaction in I ¼ 2 and I ¼ 3
pion scattering which results in little mixing of our
interpolating operators, in which each hadron has been
projected to definite momentum and is hence expected to
overlap predominantly with a single state.
For two-pion states the difference ΔE between interact-

ing and noninteracting energies is determined from single-
exponential fits at sufficiently large time separations to the
ratios,

RiðtÞ ¼
ĈiiðtÞ

Cπp1
ðtÞCπp2

ðtÞ ⟶
large t

Ae−ΔEit; ð7Þ

of diagonal elements of the “optimized” correlation matrix
Ĉ [22] and two single-pion correlation functions, and
similarly for the three-pion states [52]. Absolute energies
are reconstructed from those energy differences using the
single-pion dispersion relation. The attainable precision is
generally at the few-permille level for the energies mea-
sured in units of the single-pion mass.
Two-pion spectrum and scattering amplitude: The two-

pion spectrum with maximal isospin is shown in Fig. 2
together with the noninteracting energies. The respective

FIG. 1. Different topologies of Wick contractions required to
evaluate I ¼ 3 three-pion correlation functions. Circles indicate
quark and antiquark fields tied into meson functions shown as
boxes, which are subsequently contracted. Two-pion I ¼ 2 Wick
contractions appear as subexpressions.

TABLE I. Ensemble and measurement setup used in this work.
Measurements are performed on Ncfg configurations with spatial
volume L3 separated by 4 MDU. Correlation functions are
estimated starting from a single source time ts=a ¼ 35 using
Nη diluted noise sources to estimate quark propagators (see
Ref. [65] for unexplained notation). Other parameters, e.g., for
stout smearing [79], are the same as in Ref. [29].

amπ L=a Nev Dilution Nη Ncfg

0.06504(33) 64 448 (TF,SF,LI16) 6 1100

FIG. 2. I ¼ 2 two-pion spectrum in various irreps Λðd2Þ with
total momentum P ¼ ð2π=LÞd. Open symbols denote the mea-
sured interacting energies which are shifted from their non-
interacting values shown as dashed lines.
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differences encode the two-pion scattering amplitude for
l ¼ 0 shown in Fig. 3 neglecting the effect of higher
even partial waves. Its energy dependence for scattering
momentum q2=m2

π < 1 is described using the effective-
range expansion

qcotδ0 ¼ −
1

a0
þ r0

2
q2; ð8Þ

and the scattering length a0 and effective range r0 are
determined from a fit using the determinant-residual
method [84] with μ ¼ 64, which yields

mπa0 ¼ 0.1019ð88Þ; mπr0 ¼ 9.0ð2.4Þ;
χ2=dof ¼ 1.33: ð9Þ
A comparison of our scattering length with previous lattice
QCD determinations [7–9,15,17,18,22], together with the
experimental value from Ref. [85], is shown in the
Supplemental Material [73].
Three-pion spectrum and 1=L expansion: The three-

pion spectrum with maximal isospin is shown in Fig. 4,
displaying significant energy shifts in all irreps. In par-
ticular, interacting energy levels from different irreps that
contain some degeneracy of the noninteracting spectra
(e.g., A−

1u and E−
u at zero total momentum) differ substan-

tially, which may suggest sensitivity to different combina-
tions of low-energy scattering parameters.
At leading order in the 1=L expansion of the three-

particle quantization condition [86–90] [91],

ΔE3¼
12πa0
mπL3

�
1−

�
a0
πL

�
Iþ

�
a0
πL

�
2

ðI2þJ Þþ 3πa0
m2

πL3

þ64π2a20C3
mπL3

þ6πr0a20
L3

þ
�
a0
πL

�
3

½cLlogðNcutÞ−I3þIJ

þ15KþCFþC4þC5�
�
−

M3;th

48m3
πL6

þOðL−7Þ; ð10Þ

the ground-state energy shift ΔE3 is 3 times larger than the
corresponding two-particle shiftΔE2 [52]. The deviation of
our numerical result

ΔE3=ΔE2 ¼ 2.78ð21Þ; ð11Þ

is due to two-particle effects at higher orders in 1=L and the
three-pion interaction. Using the two-particle scattering
length and effective range determined before, the three-
particle threshold scattering amplitude entering at L−6 can
be isolated and we obtain

m2
πM3;th

48ðmπLÞ6
¼ 0.0113ð43Þ: ð12Þ

While this quantity depends on how two- and three-particle
effects are separated [50,88], within the scheme discussed
in those references our result indicates sensitivity to three-
particle physics.
Using the nonrelativistic threshold expansion from

Ref. [90] yields a result with similar significance. From
that reference, the energy of the excited states at rest are
predicted to be

A−
1u∶ E0

3=mπ ¼ 4.76ð8Þ;
E−
u ∶ E0

3=mπ ¼ 4.72ð2Þ; ð13Þ

in good agreement with our measured values. Further, the
formalism employed in Ref. [51] with the scattering
parameters determined there predicts the first excited state
in the at-rest A−

1u irrep to be [92]

E0
3=mπ ¼ 4.75 ð14Þ

at our pion mass and spatial volume, which is also in
agreement with the measured value.
More work along the lines of Refs. [43,56] is required to

apply the quantization condition to the energies in all irreps
presented here. In order to facilitate further investigations in
that direction, the two-pion and three-pion spectra are made

FIG. 3. Energy dependence of the I ¼ 2 ππ s-wave scattering
amplitude extracted from the two-pion spectrum. The gray band
shows the result of the fit to the five leftmost points using the
effective range expansion given in Eq. (8).

FIG. 4. Same as Fig. 2 but for the I ¼ 3 three-pion spectrum.
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publicly available including all correlations. The values and
covariance matrix of all extracted energies, as well as the
single-pion mass, are given in the Supplemental Material
[73], and the bootstrap samples from this analysis are
available as ancillary files with the arXiv submission.
Conclusions and outlook.—We have presented the I ¼ 3

three-pion spectrum in finite volume from lattice QCD in
which, for the first time, the excited states in various irreps at
zero and nonzero total momentum have been extracted. The
nonrelativistic three-particle 1=L expansion consistently
describes the levels in the irreps at zero total momentum.
However, the entire spectrum should be interpreted in the
framework of a full three-particle finite-volume formalism
in order to corroborate and extend our extraction of the
three-pion interaction. In the interest of facilitating those
investigations, which will require generalizations of the
formulas currently available in the literature, all spectra are
made public, including their correlations.
We also described a method to reduce the computational

cost of constructing correlation functions in the stochastic
variant of distillation, achieving a speed up of more than an
order of magnitude for the set of observables considered
here. This algorithmic improvement paves the way to study
more complicated systems such as the Roper resonance,
which has a sizable branching ratio for decays to Nππ as
well as Nπ, and also reduces the computational cost
associated with correlation function construction for
baryon-baryon systems, which will facilitate the lattice
QCD investigation of nucleon-nucleon as well as nucleon-
hyperon interactions relevant for nuclear physics.
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