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Scattering processes often inevitably include the production of infrared states, which are highly
correlated with the hard scattering event, and decohere the hard states. This can be described using the
entropy of the hard reduced density matrix, which is obtained from tracing over infrared states. We
determine this entropy for an asymptotically free gauge theory by separating the Hilbert space into hard and
infrared states, and calculate it in a leading-logarithmic approximation for jets. We find that the entropy
increases when the resolution scales defining the hard radiation are lowered, that this entropy is related to
the subjet multiplicity, and explore connections to using jet images for machine learning, and the forward-
scattering density matrix of partons in a nucleon probed in deep-inelastic scattering.
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Introduction.—In scattering experiments, one studies the
short-distance collision and initial state through the final-
state remnants. The emission of arbitrarily soft quanta, as
found in electrodynamics or gravity, limits how well one
can constrain the final state (an issue that may have
connections to the blackhole information paradox, see
[1,2]). In a confining gauge theory, the mass gap curtails
soft particle production. However, an asymptotically free
gauge theory probed at sufficient energy will have soft and
collinear production of particles throughout the regions of
spacetime transversed by hard partons, well before the mass
gap is reached, leading to jets. Practically, this implies a
similar limitation about how much one can learn concern-
ing a scattering event, prompting the following question:
how is the information about the hard scattering or the
initial state distributed over the scattering remnants, and
how much information is lost in generating these infrared
states? (Ref. [3] considered entropy production in a gauge
theory using a nonperturbative fragmentation model, sim-
ilar to the Lund string model [4,5]. Our discussion will be
strictly perturbative, seeking to capture the entropy pro-
duced in the partonic cascade before any nonperturbative
fragmentation.)

In this Letter, we quantify the correlation between the
hard parton produced in the scattering and the soft and
collinear radiation, by calculating the entropy of the hard
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reduced density matrix of a single jet in a leading
logarithmic (LL) approximation.

The correlation of soft and collinear radiation with the
scattering event is also an active area of research in
quantum chromodynamics (QCD), and is experimentally
tested at the Large Hadron Collider and the Relativistic
Heavy Ion Collider. For example, the field of jet sub-
structure aims to deduce the quantum numbers of the
particles in some hard interactions, from their soft and
collinear emissions (for a review, see [6]). Likewise, in
deep-inelastic scattering, the struck parton occupies a small
region of spacetime while it interacts with the exchanged
photon, but is entangled with the gluon and quark fields that
permeate the proton. In both cases a significant amount of
this correlation is encoded by perturbative collinear and soft
splittings, and, within jet substructure, various studies have
attempted to quantify this [7,8].

Interestingly, these examples are formally connected, as a
conformal transformation relates the structure of soft emis-
sions in the final state of a hard scattering process [9-11] to
initial-state bremsstralung of soft radiation [12-19], as
explored in [20-22]. Thus much of our discussion (since
with LL accuracy we are dealing with collinear and soft
limits) should have an analog within forward-scattering
physics, where entropy production in soft initial-state radi-
ation has been considered [23-27]. This literature has reached
differing conclusions about the amount of entropy associated
with a parton in a nucleon, which are compared to our results.
Entropy production due to correlations in momentum space
has been considered in [28,29], while [30] examined entropy
due to tracing over unobserved products in a particle decay.

Hard reduced density matrix.—The hard reduced density
matrix results from (roughly) tracing over all soft radiation
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below an energy scale E,. and all collinear radiation below
an angular scale R.. It can be used to formulate a
Monte Carlo parton shower tracking color and spin
coherence effects [31,32]. We will calculate its entropy
using all n-subjet differential cross sections, where a jet is
decomposed into subjets with opening angle R, and
minimum energy E. (Analogously, jets produced in a
hard scattering can be considered, instead of subjets in jets.)
As we will discuss, these cross sections correspond to
diagonal terms in the reduced density matrix, whose rows
and columns are indexed by the number of subjets and their
momenta. This involves dividing the phase space into
resolved and unresolved regions (the subjets and their
interiors), using for instance the jet algorithm in [33,34], or
more formally with the stress-energy tensor [35-37].

We may think of a subjet to be a hard or resolved “state”
that is dressed by further soft and collinear emissions. In the
study of the factorization of amplitudes (see, e.g., [38,39]),
the hard state is approximated by a specific on shell partonic
state. The soft and collinear emissions below the scale E,
and R, will decohere various quantum numbers of these
hard states above the scale E,. and R,.. For instance, super-
positions of distinct momentum states would be destroyed,
thus selecting a specific basis that diagonalizes the hard
reduced density matrix, as argued in [40—42]. A medium can
alter this decoherence process, which is important for jets
propagating through a heavy-ion collision [43]. The diago-
nal terms in this basis represent the quasiclassical probability
density to observe that basis state.

Though we focus on the terms that are diagonal in the
number 7 of hard emissions (subjets), the reduced density
matrix element, defined on hard states, has the general
form:

Pu{Pitiess {Pﬁ};nzl)
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Here p! denotes the momentum, a! the color, A} the spin,
and f’, the flavor of particle i in the hard amplitude Cy, with
the corresponding unprimed variables for the conjugate

amplitude CL. The function / is a combination of functions
similar to the soft functions (matrix element of eikonal
Wilson lines) and collinear functions found in factorization
using soft-collinear effective theory [44-46] (see, e.g.,
[47,48] for examples of infrared functions for exclusive
n-jet cross sections, and [49] for extensions to subjets) or in
the Collins-Soper-Sterman (CSS) approach (see, e.g.,
[50,51]). It describes production of the soft and collinear
emissions below the scale £, and R, that we used to define
the hard radiation, and is related to the Feynman-Vernon

influence functional in the decoherence literature [52]. We
have
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unless n =m, p; = p; and a; = d| for all i, (2)
because otherwise infrared divergences do not cancel. (For
a discussion in the context of heavy nonrelativistic particles
coupled to photons, see [52]. A calculation of the influence
functional for distinct spacetime paths in the amplitude and
conjugate amplitude reveals that, at late times, infrared
divergences drive it to zero.)

Specifically, soft radiation forces the directions of the
momenta and the gauge representations of the particles
(representing the subjets) to be equal in the amplitude and
conjugate amplitude, while collinear radiation forces the
energies to be equal. Focusing on QCD, the SU(3)
representation separates quarks from gluons. We will
assume that quark flavors and spins are not observed,
tracing over them.

Consequently, the diagonal reduced density matrix is
given by the following sum over exclusive n-subjet cross
sections:
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Here dIl, denotes the on shell phase space of n-hard
emissions, p/ the jet momentum, and the sum starts at
n = 1 corresponding to one subjet. The integral is restricted
to the hard region of phase space, denoted by the subscript
H. We have normalized the differential cross section,
so that we may interpret the differential cross section
as a probability density P, ie., p,({p:}r ;. {p:}\,) =
(1/0)do/dll,, = dP/dll,,.

Entropy.—We first consider the Renyi entropy of the
reduced density matrix:
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We can now obtain the von Neumann entropy by taking the

limit a - 1,
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This conforms to our expectation about the entropy of a
decohered quantum system: it is simply the entropy of the
quasiclassical probability distribution given by the diagonal
matrix elements in the basis that diagonalizes the matrix.

Leading logarithmic calculation.—Our goal will be to
calculate the entropy at LL accuracy, where the LL subjet
distribution is defined as

dP  dp, R E
= In-—In—
dIl, I, <“‘f "R, “Ec>

R E
X [1+O<aslnR—c,aslnE—6)], (6)

with E the energy and R the radius parameter of the (fat)
parent jet. We use the angular-ordered factorization found
in [53,54]: a hard parton, of flavor i and energy E produced
in the short-distance scattering, undergoes a series of
splittings, which have a much smaller angle than the
previous one. Thus the initial parton 7 splits at an angle
6 into daughters with flavors j and k carrying a fraction z
and 1 — z of the initial momentum, as described by

dPi g 7) k
E,R l"J —Ai(R.0)
dll, ( )= z(1-2) 9E2 Z

dp’ dP*
X —(ZE 9)

/ [P o

Here P,_, . are splitting functions, A;(R, #) is a Sudakov
factor describing the no-splitting probability between the
angle R and 6, z. = E./E, the indices j, k denote all
possible flavor combinations, and the strong coupling a; is
evaluated at the scale set by the transverse momentum of

|

[(1 —-2z)E. 0],

the splitting. The overall factor cancels a corresponding
factor in the phase space in Eq. (8), but enters in the entropy
because of the logarithm in Eq. (5). We assumed that one
daughter will split into m partons and the other daughter
into n — m partons, and it is crucial that the sum on m is part
of the phase space so it sits in front (rather than inside) the
logarithm in Eq. (5). The reason is that a parton produced
by daughter j, has an angle with j much smaller than 6 due
to strong angular ordering, and can therefore never be
produced by parton k. Not all contributions to the cross
section satisfy strong angular ordering, but these are
subleading in the expansion of Eq. (6).

Corresponding to the factorization of the probability
densities, the phase space of the n-hard emissions facto-

rizes as
«9E2
/ / do?1 = OE”
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H
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Here we integrate over the momentum fractions and
splitting angles for the splitting of the initial parton, sum
over all partitions m of the daughters, and integrate over
their phase space. The upper bound of subsequent splittings
is @ rather than the jet radius R, as indicated by the
second argument of the phase space. The transverse
momentum ¢ ; of the daughters is related to the angle € by
lq.| = z(1 - 2)EO.

Combining Egs. (), (7), and (8), and taking the soft limit
z< 1 of the splitting functions, we get the following
equation for the entropy:

-q1,0). (8)
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Here C, = % for (anti-)quarks and C, = 3 for gluons. We ~ ¢4(RR:) and take the derivative with respect to R, to

are forced to introduce the energy scale A, to make the  obtain
probability entering the logarithm in Eq. (5) dimensionless, oS, 9
converting the phase-space volume into a number of states. R R Y(E,R) = e ™(RRIR 3R (et RRIF (E,R))
It is natural to take A « E.R,, using the phase-space | d2 20 (zER)C
volume of the infrared states that are traced over as unit. + / _ZMSQ(Z E.R). (10)
Note that in the soft limit the g — ¢g splitting is sublead- o % T

ing, and that we can replace 1 —z — 1.
Focusing on a gluon jet, we first multiply both
sides of Eq. (9) by the inverse Sudakov factor

We can obtain an analytical solution by ignoring the
running of the coupling, in which case the first term in
Eq. (10) simplifies significantly, leading to
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2a,C, E . R\
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where [, and /; are modified Bessel functions.

The evolution equations in Eq. (9) resemble those
obeyed by multiplicity of (sub-)jets or hadrons [55-58].
At LL accuracy the multiplicity is described by ,(x), and
the first line of Eq. (11) can be identified as a driving term
proportional to the number of branchings (equal to the
multiplicity minus 1). We find asymptotically the same
growth in entropy as in the average subjet multiplicity:

X

Under the conformal mapping that relates partons
showers to initial-state cascades used in forward-scattering
descriptions of deep-inelastic scattering [20], we can
compare to the entropy of a density matrix resulting from
tracing over color-connected dipoles of too small transverse
size in impact-parameter space. Under this mapping, the
energy ordering [In(E/E.)] of the parton shower corre-
sponds to the rapidity ordering (Y) of the initial-state
cascade, while angles correspond to the transverse size
of the dipole in impact-parameter space. Though the initial
conditions are radically different, based on the conformal

8,(E.R) (12)

mapping we conjecture that the entropy grows as MY with
/ a constant. Interestingly, this differs from [25], where the
entropy was estimated to grow proportional to Y, and [26],
which found an exponential growth ¢#*. However, it is not
clear that the conformal mapping translates the decom-
position of the Hilbert space used to define the reduced
density matrix for jet physics into the same one used in
forward scattering.

Numerical results.—The entropy can also be considered
an example of a fractal jet observable. Those observables
depend on the clustering tree of a jet algorithm [59]. For the
entropy we use the Cambridge-Aachen algorithm [33],
which combines the two particles closest in angle into a
parent pseudoparticle (by summing their momenta), repeat-
ing until the list consists of a single pseudoparticle. This
can be thought of as treating the two nearest particles as
arising from a perturbative splitting, which is in accord with
the angular-ordered approximation we employed in the
leading logarithmic calculation of the entropy, i.e., the C/A
clustering tree corresponds to the branching history.

This branching history yields a list of energy fractions
Z ={z, ..., 2,} (taking the smaller of the energy fractions
of the daughters being clustered, defined with respect to the
jet energy), and a list of branching angles ® = {6,, ...,0,}

(the relative angles between the daughters clustered in each
step). These lists are reversely ordered compared to the C/A
clustering, so ¢; > 6, >, ..., > 6,. They correspond to the
branchings which generate hard subjets, so that ,, > R,.,
and z;E > E_ for each z; € Z. The multiplicity of hard
subjets is therefore n + 1, where the +1 comes from the
initiating parton. At LL accuracy, we can compute the
entropy as

5,(2.0) = A (RR)+ Y {Ag(ﬁj,Rc;Zj, z)
j=1

' (SHCA(ZS (szHj)Azﬂ ’

202 2
zj6’jE

(13)

which follows from Eq. (9). Here A, is the Sudakov factor
(for simplicity, we consider only gluons), and the extra
arguments z; and z,. indicate the range of the z integral. The
interpretation of Eq. (13) is that the entropy of the shower is
the sum of the entropies generated at each step of the
shower. If we average over many events, denoted by (),
this converges to Eq. (9),

Sy = (s4)- (14)

In Fig. 1 we show the entropy of a gluon jetin Eq. (11) as
the angular cutoff R, is lowered, comparing against a LL
shower with both fixed and running coupling (this shower
uses the collinear-soft approximation to the branching
amplitudes, and ignores recoil effects). We take A? =
E2R2/(8nC,ay), but other choices would simply add to
our result a constant times the multiplicity minus one.
At fixed coupling, we see exact agreement with our analytic

200 [ T ‘ T T T T ‘ T T T ‘ ‘ T , T ]

Looeens analytic (fixed o) / ]

. —— Monte Carlo (fixed ;) // ]

1501~ _ _ Monte Carlo (running ) / B

[ / 4

" ay(Mz) =011, E./E = 0.01 ! 1

Sg100- g —1Tev, R=1 .

50 -

0 C T L

0 1 2 3 4 5
In(R/R.)

FIG. 1. The entropy of a gluon jet as function of the ratio
of the jet radius R over the subjet radius R., with A=
[(E2R?%)/(87C4ay)]. Shown are the analytic (red dotted) and
Monte Carlo (blue solid) result for E/E, =0.01 at fixed
coupling, as well as the Monte Carlo result with running coupling
(green dashed), which now depends on the jet energy E = 1 TeV
and radius R = 1.
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expressions. Using the shower we can gauge the effect of
the running coupling, with substantial deviations as the
Landau pole is approached on the right side of the plot.
With the appropriate generalization of the definitions in
Egs. (13) and (14), the entropy generated in an arbitrary
parton shower or experiment can be measured.

Conclusions.—Fundamentally, the generation of the
final state in a scattering process in an asymptotically free
gauge theory (or in QED or gravity) is a stochastic process,
driven by the underlying quantum dynamics of the field
theory, decohering the produced hard states, such that
superpositions of momentum states are destroyed, quantum
intereference effects are lost, and a quasiclassical proba-
bility distribution dominates. This is characterized by a
density matrix with a nonzero entropy, which we calculated
at LL accuracy for jets. In the approximations used for
calculating scattering cross sections, the hard states are
always fully decohered, regardless of the resolution param-
eter: at any finite resolution of the states, the measurement
is formally integrated over an infinitely long time (see
[35]), allowing the production of ever softer and more
collinear radiation below the resolution scale. In the LL
picture, this stochastic process has a “time” associated to it,
evolving from the widest angles that the hard partons can
emit down to the smallest angles. We have shown that this
evolution satisfies a second law: entropy increases as we
examine the final state at smaller angles.

Further, the entropy obeys an evolution equation closely
related to the subjet multiplicity, approaching it asymp-
totically (up to a constant). This is perhaps not surprising,
given that contribution to the entropy at each splitting is
determined by the available phase space. Thus the entropy
of the process creating the jet should be connected to the
so-called 4 measure introduced in [60,61] as a proxy for the
multiplicity, as well as a means to investigate the fractal
nature of how the parton shower distributes the momentum
of the initial hard state into smaller phase-space cells
[62-64].

The growth in entropy has a practical consequence for jet
substructure and, in particular, machine learning. One can
train discriminators based on course-grained representa-
tions, truncating the energy flow to only a few momentum
regions (see, e.g., [8,65,66]), a much larger basis [67], or as
fine grained a representation as experimentally possible
(the “jet image” [68-71]). All approaches can provide
similar discrimination power, even though it may seem that
the latter contains more information. However, the same
amount of information has just been further stochastically
diluted, explaining why machine learning discriminators
can saturate with only a relatively small number of
momentum regions. There is of course a compensating
effect, as coarse graining can deteriorate the angular and
energy resolution. Additionally, there is something
to be learned from the scaling pattern of the entropy as
a fractal observable, and it would be fascinating to see how

such an observable is related to machine learning
discriminators.
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