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Coupling a qubit coherently to an ensemble is the basis for collective quantummemories. A single driven
electron in a quantum dot can deterministically excite low-energy collective modes of a nuclear spin
ensemble in the presence of lattice strain. We propose to gate a quantum state transfer between this central
electron and these low-energy excitations—spin waves—in the presence of a strong magnetic field, where
the nuclear coherence time is long. We develop a microscopic theory capable of calculating the exact time
evolution of the strained electron-nuclear system. With this, we evaluate the operation of quantum state
storage and show that fidelities up to 90% can be reached with a modest nuclear polarization of only 50%.
These findings demonstrate that strain-enabled nuclear spin waves are a highly suitable candidate for
quantum memory.
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Introduction.—Quantum memory working in conjunc-
tion with a computational qubit is a central element in fault-
tolerant quantum computing and communication strategies
[1,2]. Prominent examples of quantum memory implemen-
tations include collective states of atomic ensembles [3–6]
and rare-earth-ion doped crystals [7,8] able to store a
photonic qubit, cold ions, where the decoherence-free
subspace of a local ion pair acts as memory for a single
ion qubit [9,10] and nitrogen vacancy centers in diamond,
where the electronic spin state can be written into a single
proximal nuclear spin [11–13]. For semiconductor quan-
tum dots, the mesoscopic spin environment comprising
∼104–105 nuclei is a candidate for a collective quantum
memory that can store the electronic spin state [14–16],
with the promise of coherence times reaching milliseconds
[17]. A strategy for electron-nuclear state transfer is based
on flip flops generated by the collinear hyperfine inter-
action [14]. A consequence of this interaction scheme
brings about opposing requirements: Vanishing electron
spin splitting during the state transfer vs large electron spin
splitting to polarize and stabilize the nuclear coherence
[18]. An alternative approach is to use collective nuclear
spin wave excitations that have recently been observed
under a strong magnetic field in the form of a coherently
distributed single nuclear spin excitation [19] through an
effective noncollinear hyperfine interaction [20]. In this
Letter, we propose a protocol for quantum memory based
on this interaction, which in equilibrium is suppressed by
a strong static magnetic field, but can be controllably
switched on for a finite time by driving the qubit out of
equilibrium.
The noncollinear hyperfine interaction responsible for

qubit-controlled spin wave excitation originates from
strain. In a strained lattice [cf. Fig. 1(a)], the induced
electric field gradient couples to the quadrupole moment of

the nuclei, thereby tilting the nuclear spin quantization axis
away from that dictated by the magnetic field (defining the
z axis). This strain-induced mixing of the Zeeman eigen-
states allows otherwise forbidden nuclear transitions that

(a) (b)

(c)

(d)

FIG. 1. (a) System schematic comprising a pulse-driven elec-
tron coupled to a mesoscopic bath of nuclear spins. (b) Structure
of the high-spin (I > 1=2) nuclei, here shown for I ¼ 3=2. (c) Spin
transitions between states in (b) generated by the noncollinear
processes Φ�

1 and Φ�
2 . (d) In the memory write-in process, the

stimulated electron–nuclear interaction flips the electron and
generates a nuclear spin wave conditionally on the electron spin,
thereby transferring the electron state to the nuclear ensemble.
Here, the time-evolution operator, U ¼ e−iHIπ=ð2gζÞ, corresponds
to the evolution in Eq. (2) at time t ¼ π=ð2gζÞ.
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can be accessed by the electron through the hyperfine
interaction, Hhf ¼

P
j 2A

jIjzSz (Sz and Ijz are electronic
and jth nuclear spin-z operators). The transitions are
activated when the electron spin is driven—magnetically
or optically—to bridge the excitation energy gap corre-
sponding to the nuclear Zeeman energy, ωn

Z.
Equipped with an interaction mechanism that can be

switched on and off, information can be controllably
transferred from the electron to the nuclei by letting the
two subsystems interact for a finite duration. This can be
realized in multiple ways; for the current proposal, we
consider a Hamiltonian engineering approach based elec-
tron spin rotations on the Bloch sphere with a sequence of
fast pulses [21], which selectively enhances the collective
electron-nuclear transitions and simultaneously cancels out
slow noise from the nuclear Overhauser field. The electron
spin rotations in the pulse sequence can be carried out using
an all-optical Raman drive to obtain phase-controlled
manipulation at Rabi frequencies far exceeding the nuclear
Zeeman splitting and hyperfine fluctuations of the electron
Zeeman energy [22]. The nuclear coherence time can be
extended up to milliseconds by removing the electron from
the quantum dot [18] or alternatively by decoupling of the
Knight field through a simple electron spin echo sequence
[23,24]. Readout of the nuclear memory is effectuated by
once again driving the electron to turn on the interaction.
Electron-nuclear exchange mechanism.—The Hamil-

tonian describing the quadrupolar coupling of the N
nuclear spins (I > 1=2) is

HQ¼
XN

j¼1

BQ½ðIjxÞ2sin2θþ
1

2
ðIjxIjzþIjzI

j
xÞsin2θ

þðIjzÞ2cos2θ�;

where Ijα; α ¼ x, y, z are the spin operators of the jth
nucleus, θ is the tilt angle of the quadrupolar axis away
from z, and BQ is the quadrupolar interaction strength. The
low-energy excitations of the system are obtained through a
Schrieffer-Wolff transformation perturbative in BQ=ωn

Z,

which replaces HQ by H0
Q þ V 0

Q. H
0
Q commutes with Ijz

and V 0
Q ¼ Sz½A1ðΦþ

1 þΦ−
1 Þ þA2ðΦþ

2 þΦ−
2 Þ� is a noncol-

linear hyperfine interaction [19,25]. Here, Φþ
ζ (ζ ¼ 1, 2)

denotes the nuclear spin wave operators

Φþ
1 ¼

X

j

aj½IjþIjz þ IjzI
j
þ�; Φþ

2 ¼
X

j

ajðIjþÞ2;

withΦ−
ζ ¼ ðΦþ

ζ Þ†; thus Φ�
ζ changes the net nuclear spin by

�ζ as shown in Figs. 1(b)–1(c). The overall strength of the
interaction is given by A1 ¼ 1

2

P
j A

jBQ sin 2θ=ωn
Z and

A2 ¼ 1
2

P
j A

jBQsin2θ=ωn
Z, and aj ¼ Aj=

P
j0 A

j0 are the
normalized hyperfine coefficients. A quadrupolar coupling

strength of BQ ¼ 1.5 MHz, which is typical of naturally
occurring strain [30] or which can be engineered in situ
[31,32], will be considered here.
A nuclear spin transition corresponding to the action of

Φ�
ζ costs an energy of ζωn

Z, which in a strong magnetic
field is considerably larger than the transition matrix
elements of V 0

Q. Consequently, these processes are far
off resonance in equilibrium. To switch the interaction on,
we follow Ref. [21] and consider the action of a pulse
sequence on the electron spin, driving it with a set of short
Sx and Sy pulses separated by a time interval, τ=4. By
setting τ ¼ lπ=ðζωn

ZÞ, where l is an odd integer, the
coupling between the electron and the Φζ mode is reso-
nantly enhanced, and the system will evolve under an
effective flip-flop Hamiltonian [25]

HI ¼ A0
ζðΦþ

ζ S− þΦ−
ζ SþÞ; ð1Þ

where S� ¼ Sx � iSy are the electron spin-flip operators
and A0

ζ is a rescaled coupling rate taking its maximal

value for l ¼ 3, whereA0
ζ ¼ ð2þ ffiffiffi

2
p Þ=ð3πÞAζ. When the

nuclei are initialized in a fully polarized state, this
Hamiltonian will create a nuclear spin wave and flip the
electron spin conditionally on the electron spin state [see
Fig. 1(d)], thus forming the basis of information transfer
between the electron and nuclear ensemble. While realistic
quantum dots comprise nuclei of several species, we show
[25] that under a magnetic field sufficiently strong to
energetically resolve each species, the pulse sequence
can couple the electron to a single species.
To see how this protocol turns nuclear spins into a

quantum memory, we first consider a perfectly polarized
nuclear bath [see Fig. 2(a)]. We write this nuclear state as
j0i ¼ j−I;…;−Ii, and take the electron to be initialized in
the state jϕi ¼ αj↑i þ βj↓i, which we want to transfer
to the nuclei. Because the nuclei are initialized in the
ground state, no downwards transitions are possible and
Φ−

ζ j0i ¼ 0. The excited nuclear state j1i ∝ Φþ
ζ j0i is a

distributed superposition of nuclear excitations [indicated
by blue dots in Fig. 2(a)],

P
j ajj−I;…; ð−I þ ζÞj;…;−Ii.

Crucially, when deexciting the spin wave, the only down-
wards nuclear transitions available are those that were
excited from the ground state, and thus Φ−

ζ j1i ∝ j0i.
Because of these properties, the system evolves within a
three dimensional subspace as

jψðtÞi¼α½cosðgζtÞj↑i⊗ j0i− isinðgζtÞj↓i⊗ j1i�
þβj↓i⊗ j0i; ð2Þ

gζ ¼ FζA0
ζ

ffiffiffiffiffiffiffiffiffiffiffiffiP
j a

2
j

q
(scaling as

ffiffiffiffi
N

p
) is a collectively

enhanced noncollinear coupling rate, where F1 ¼
ð1 − 2IÞ ffiffiffiffiffi

2I
p

; F2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið2I − 1Þp

. At time t ¼ π=ð2gζÞ
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the electron-nuclear wave function separates, jψðπ=2gζÞi¼
j↓i⊗ð−iαj0iþβj1iÞ, and the electron state is identically
transferred to the collective state of the nuclei to be stored.
Operation at partial nuclear polarization.—A realistic

implementation will initialize the nuclei in a partially
polarized state [33], jMi ¼ jm1;…; mNi, such that there
is a small number of lower energy states to scatter into, and
thus Φ−

ζ jMi ≠ 0 [see Fig. 2(b)]. Accordingly, the down-
wards transition jMi → Φ−

ζ jMi is no longer forbidden as in
the perfectly polarized case, but will take place with a rate
G−, which is slower than the upwards coupling rate Gþ.
Similarly, the downwards transition Φ−

ζ from the excited
stateΦþ

ζ jMi does not lead back to jMi but mixes with other

states generated by deexcitation of the initially unpolarized
nuclei. This leads to dephasing of the spin wave mode
serving as quantum memory. Nonetheless, the asymmetry
of the coupling rates (Gþ > G−) makes it possible to
operate the quantum memory at finite polarizations.
To calculate the electron-nuclear dynamics during the

pulse sequence, we have developed a numerically exact
technique that maps the nuclear many-body state onto two

one-dimensional chainsof states, Ŝ�¼fjM̂ðkÞ
� ijk¼0;…;Ng.

Here, the initial state jM̂ð0Þ
þ i ¼ jM̂ð0Þ

− i ¼ jMi appears as the
first link in both chains. The set Ŝþ (Ŝ−) represents the set of
states tied with the evolution of a positive (negative) spin
wave. The coupling structure ofHI , taking the electron spin
into account as well, is illustrated in Fig. 2(c), where a
coupling rate of Gþ between two neighboring states is
depicted with a double line and G− with a single line. In
theSupplementalMaterial [25]wederive the formof thebasis
sets Ŝ� and show that only neighboring nuclear states are
coupled by the spin wave operators entering HI ,

hM̂ð2n�1Þ
þ jΦþ

ζ jM̂ð2nÞ
þ i¼hM̂ð2nÞ

− jΦþ
ζ jM̂ð2n∓1Þ

− i¼G�=A0
ζ;

hM̂ð2nÞ
þ jΦ−

ζ jM̂ð2n�1Þ
þ i¼hM̂ð2n∓1Þ

− jΦ−
ζ jM̂ð2nÞ

− i¼G�=A0
ζ: ð3Þ

The asymmetry in rates is parametrized by a leakage
factor G−=Gþ, which indicates the extent to which the
nuclear phase space is explored in the evolution. In the
fully polarized case, where the initial state is jMi ¼ j0i
(and jM̂ð1Þ

þ i ¼ j1i), we find Gþ ¼ gζ;G− ¼ 0 (no leakage),

meaning that the three states j↑i ⊗ jMi; j↓i ⊗ jM̂ð1Þ
þ i;

j↓i ⊗ jMi are completely decoupled from the residual
part of the two chains [which in Fig. 2(c) is signified byR],
recovering the ideal state transfer dynamics of Eq. (2). For
finite initial nuclear polarization, we generally have
Gþ < gζ and G− > 0 (finite leakage), and thus the three
states couple to the residual chains, R. Figures 2(d)–2(e)
show the electron and nuclear dynamics as the leakage
factor G−=Gþ is gradually changed from the ideal case of 0
(solid lines) to 30% in linear steps (decreasing opacity). As
G− is increased, the system is more rapidly delocalized
along the chain, leading to uncontrollable electron-nuclear
correlations that are seen as damped oscillations in the
nuclear and electronic populations. When calculating the
dynamics, it is necessary to truncate the nuclear chains of
states to a certain k index, k�. As long as the occupation

of the states jM̂ðk�Þ
� i is sufficiently small, the truncation

remains a valid approximation. The necessary value of k�
needed for convergence depends on the evolution time and
the leakage factor G−=Gþ, which together determine how
far into R the state will diffuse.
Figure 3(a) shows the ratio G−=Gþ as a function of

nuclear polarization, averaged over the nuclear initial
state distribution, pðMÞ. This distribution is taken as
thermal at the polarization-dependent temperature T,

(a)

(b)

(d) (e)

(c)

FIG. 2. (a) Collective spin wave excitation starting from a fully
polarized state, where all nuclei are in the ground state (gray
dots). The black circles emphasize the nuclei that have exchanged
energy with the electron. The spin wave contains a single nuclear
excitation (blue dots) distributed among all of the nuclei in a
superposition. (b) Spin wave excitation from finitely polarized
nuclear product state jMi to target state jM̂ð1Þ

þ i, where initially
excited nuclei allow leakage transitions, respectively, to ortho-

gonal states jM̂ð1Þ
− i and jM̂ð2Þ

þ i. (c) Coupling structure in 1D
mapping of nuclear state space. The initial state is a superposition
of the two green states, and interactions couple these initial states
to a 1D structure of states. Double lines signify the fast coupling
rate Gþ, and single lines the slow rate, G−. For a fully polarized
ensemble G− ¼ 0 and the three upper states remain isolated; at
finite polarization, this subspace is coupled to the residual chain
of states, R. (d)–(e) Dynamics for initialization in electron states
j↑i and j↓i, respectively. Solid lines signify the fully polarized
case, where G− ¼ 0. Lines with decreased opacity signify
decreased polarization and thus an increased G− rate, with the
maximal value G−=Gþ ¼ 0.3. Line colors correspond to states in
panel (c).
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i.e., pðMÞ ∼Q
j exp½−mjω

n
Z=ðkBTÞ�, where kB is the

Boltzmann constant [25], for I ¼ 3=2 and N ≃ 5 × 104

[see Fig. 3(a)]. The relative ensemble standard deviations
(not shown) are negligible,∼10−3. An important conclusion
drawn from Fig. 3(a) is that the ζ ¼ 2 mode is more robust
towards imperfect polarization, owing to the different
dependence of the leakage factor G−=Gþ on polarization
for ζ ¼ 1 and ζ ¼ 2. TheΦ−

2 transition becomes dark when
the levels m ¼ þ3=2, m ¼ þ1=2 are depleted, whereas for
Φ−

1 , the level m ¼ −1=2 needs to be depleted for this to
happen. Indeed, the lower levels of a single spin manifold
[Fig. 1(b)] will be populated first, as the polarization is
decreased, thus enabling the Φ−

1 transition before the Φ−
2

transition.
Figure 3(b) shows the calculated values of Gþ as a

function of nuclear Zeeman splitting, where the lines
indicate a polarization of 50% and the shaded area shows
the variation as the polarization is sweeped from unity
(maximum values) to 0 (minimum values). The coupling
rate Gþ is proportional to sinð2θÞ for the ζ ¼ 1mode and to
sin2 θ for ζ ¼ 2. These angular prefactors have been
assumed to be unity to maximize the rates shown in
Fig. 3(b), which can be converted to rates for any quad-
rupolar angle by multiplying them with these prefactors.
State transfer fidelity.—The state transfer fidelity is

defined as the overlap between the initial electron state
and the electron state after a full write-read cycle. We
initialize the system in the state jψð0Þi ¼ jϕi ⊗ jMi and let

it evolve under the pulse sequence for a time t1 to write the
electron state into the nuclei, thus generating the state
jψðt1Þi. After this, we trace out the electron to obtain the
reduced nuclear state ρnðt1Þ ¼ Tre½jψðt1Þihψðt1Þj�. To read
the nuclear state back into the electron spin, we reinitialize
the density operator in the state ρðt1; 0Þ ¼ j↓ih↓j ⊗ ρnðt1Þ
and let the system evolve under the pulse sequence for a
time t2, where the total density operator is ρðt1; t2Þ. We then
evaluate the overlap of the electron spin state (tracing
out the nuclei) with respect to the input state to assess the
fidelity F ðt1; t2Þ ¼ Trn½hϕ0jρðt1; t2Þjϕ0i�, where jϕ0i ¼
αj↑i − βj↓i. The fidelity is then averaged over the six
states ðα;βÞ¼ð1;0Þ;ð0;1Þ, ð1= ffiffiffi

2
p Þð1;�1Þ, ð1= ffiffiffi

2
p Þð1;�iÞ,

and there is a unique combination of write-in (t1) and
readout (t2) times, found numerically, that maximize this
fidelity. In the fully polarized case, the optimal t1 and t2 are
simply π=ð2GþÞ, but as the polarization is decreased,
coupling to R necessitates slightly (<20%) longer transfer
times. The time-optimized fidelity is presented in Fig. 3(c),
which confirms that it follows the polarization dependence
of the leakage factor, G−=Gþ, and accordingly that the
fidelity is generally higher for the ζ ¼ 2 mode if the
polarization is finite. In particular, for ζ ¼ 2, the fidelity
remains above 90% throughout the polarization range
50%–100%.
Adjusting to quadrupolar energy shifts.—The Ijz-

commuting contribution to the quadrupolar Hamiltonian
can be written as H0

Q ¼ P
jΔQðIjzÞ2, with ΔQ ¼

BQðcos2θ − 1
2
sin2θÞ. In general, ΔQ varies over the ensem-

ble, and the individual spin components in the spin wave

j1i evolve with a phase factor e−iζ
2Δj

Qt, building up a
relative phase among the components on a timescale set by
the ensemble variation of Δj

Q, denoted by σðΔQÞ. As a
result, j1i rotates into a dark subspace, fj1pig, such that
Φ−j1pi ¼ 0 with a rate of γ ¼ ζ2σðΔQÞ [25]. In Fig. 3(d),
we show how the transfer fidelity at full nuclear polariza-
tion depends on this inhomogeneity. As indicated, the
energy scale of the inhomogeneity σðΔQÞ must be com-
pared to the coupling rate Gþ to assess its impact. Thus,
with a realistic value of Gþ in the MHz range, a quadrupolar
inhomogeneity below ∼100 kHz, achievable, e.g., through
lattice-matched epitaxial quantum dot growth [33], does
not degrade the transfer fidelity appreciably. Importantly,
decoherence due to rotation into the dark subspace is only
of concernduring the transfer process: after the state has been
transferred, the collective phase of the nuclear excitation can
be refocused through an NMR pulse sequence operating on
the fm ¼ −I; m ¼ −I þ ζg subspace [17,25,34]. In the case
of a nonzero mean value of ΔQ, them ¼ −I tom ¼ −I þ ζ
transition is shifted by δ ¼ ðζ2 − 2IζÞΔQ. The memory
transfer is then simply effectuated by setting the pulse time
delay to τ ¼ lπ=ðζωn

Z þ δÞ.
During storage, we expect the dominant nuclear dephas-

ing mechanism that determines the coherence time of the

(a) (b)

(c) (d)

FIG. 3. (a) Leakage factor as ratio of coupling rates, G−=Gþ as a
function of nuclear polarization. Green solid (blue dotted) lines
denote ζ ¼ 2 (ζ ¼ 1). (b) Coupling rate Gþ for ζ ¼ 1 (blue dotted)
and ζ ¼ 2 (green solid) at P ¼ 0.5 for varying nuclear Zeeman
splitting. The shaded area corresponds to the range of values from
P ¼ 0 to P ¼ 1. (c) Transfer fidelity of total write-in and readout
cycle as a function of polarization. (d) Transfer fidelity of total
write-in and readout cycle at full polarization (P ¼ 1) as a
function of inhomogeneity in quadrupolar energy shift.
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memory to be the electron-mediated nuclear dipole-dipole
interaction, which scales inversely with the electron
Zeeman splitting [18]. In the presence of this dephasing
mechanism, the coherence time of the nuclear memory is
tens of microseconds. If, however, the electron is removed
from the quantum dot after its state is transferred to the
nuclei, the only dephasing mechanism is the intrinsic
neighbor dipole-dipole interaction, and the coherence time
can be well into the millisecond regime [16,17,24].
Importantly, the nuclei should be polarized as to increase
the electron Zeeman splitting. This way, nuclear polariza-
tion leads not only to increased fidelity in the transfer
process, but also to a prolonged storage time.
Conclusion.—We have proposed a scheme for collective

quantum memory, which can reach transfer fidelities for a
full read-write cycle as high as 90% with a modest nuclear
polarization of 50% for realistic experimental parameters.
In addition, the theoretical and experimental techniques we
have presented open new possibilities for further explora-
tion and manipulation of the collective nuclear degrees of
freedom, for example, the generation of nuclear cat states,
squeezed states, and condensates.
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