
 

Braiding and Fusion of Non-Abelian Vortex Anyons

T. Mawson,1,* T. C. Petersen,1,2 J. K. Slingerland,3,4 and T. P. Simula1,5,†
1School of Physics and Astronomy, Monash University, Victoria 3800, Australia

2Monash Centre for Electron Microscopy, Monash University, Clayton 3800, Australia
3Department of Theoretical Physics, Maynooth University, County Kildare, Ireland

4Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Road, Dublin, Ireland
5Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia

(Received 24 January 2019; published 3 October 2019)

We have studied topology and dynamics of quantum vortices in spin-2 Bose-Einstein condensates. By
computationally modeling controllable braiding and fusion of these vortices, we have demonstrated that
certain vortices in such spinor condensates behave as non-Abelian anyons. We identify these anyons as
fluxon, chargeon, and dyon quasiparticles. The pertinent anyon models are defined by the quantum double
of the underlying discrete non-Abelian symmetry group of the condensate ground state order parameter.
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All elementary particles are classified by their quantum
statistics as either bosons or fermions. However, in certain
two-dimensional materials, particlelike excitations—
anyons—which are neither bosons nor fermions, have been
predicted to emerge [1,2]. When two anyons are exchanged,
braiding their space-time world lines, the system’s wave
function may accumulate an arbitrary phase not restricted to
the specific values corresponding to bosons or fermions. For
non-Abelian anyons, exchange may act through noncom-
muting unitary operators, rather than simple phases. Also,
how such anyons fuse (combine) when brought together
depends on the history of their paths prior to the fusion.
Encoding information in the nonlocal fusion properties of
non-Abelian anyons forms a tantalizing prospect for reali-
zation of a fault-tolerant universal quantum computer [3,4].
Recent advances in quantum computing have come

from intense research focus on qubits realized in a variety
of systems including trapped ions [5–7], spins in silicon
atoms [8,9], and superconducting circuits [10,11]. Such
systems must contend with the accumulation of sponta-
neous errors due to the interactions with the environment.
In contrast, topological quantum computers based on
topological qubits made of non-Abelian anyons are antici-
pated to be more resilient due to being topologically
protected from many conventional types of decoherence.
Two promising non-Abelian anyon platforms are the
Fibonacci and Ising anyon models [12–16]. A number
of experiments have explored the potential realization of
such anyons in condensed matter systems including
Majorana zero modes [17–21] and quasiparticles in certain
fractional quantum Hall states [22–24]. Other non-Abelian
anyon models have been proposed to be realizable using
fluxons [25–27]. Notwithstanding, the existence of a
physical system of non-Abelian anyons capable of univer-
sal quantum computation remains an open question.

Theoretically, it is known that quantum vortices in
superfluids are capable of accommodating non-Abelian
quasiparticles. Both Fermi gases with putative chiral
p-wave order parameter and fermionic superfluid helium
3, if confined in two dimensions, have been predicted
to host Majorana zero modes trapped by their vortex
cores [28–33]. Furthermore, in certain high-spinBose gases,
such as those considered in this Letter, vortices are charac-
terized by non-Abelian symmetry groups [34–38], that
result in nontrivial topological interactions between
vortices [39].
Here, we build upon these ideas by performing direct

numerical simulations of controllable braiding and fusion of
non-Abelian vortices in spinor Bose gases. We computation-
ally demonstrate that certain fractional vortices—particlelike
topological excitations in two-dimensional (2D) spinorBose-
Einstein condensates (BECs)—may be non-Abelian fluxon
anyons and are potentially useful for applications in topo-
logical quantum information processing and storage. In
addition to fluxons, excitations in these systems include
chargeons [40] and charge-flux composites known as
dyons [41–44]. The full spectrum of excitations is labeled
using the quantum double of the symmetry group of the
condensate [45]. In addition to chargeons, these systems also
allow for completely delocalized Cheshire charges [46,47].
We simulate the braiding and fusion of non-Abelian vortex
anyons by employing external pinning potentials that could
be realized using focused laser beams [48,49], to controllably
manipulate the states of topological qubits constructed from
such non-Abelian vortex anyons.
Non-Abelian vortex anyons.—A non-Abelian anyon

model has three essential aspects: (i) a list of particle
types, (ii) a set of fusion rules that determine the types of
particles formed after fusing together two particles, and
(iii) braiding rules that describe the effect of exchanging the
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positions of two particles. We demonstrate that the topo-
logical interactions of our non-Abelian fractional vortices
in spinor Bose-Einstein condensates [35–37,50–54]
contain the essential aspects of a non-Abelian anyon
model. The anyon models involved are similar to those
of non-Abelian toric code models [4] or discrete gauge
theories [45].
Physically, the order parameter of a spinor BEC inherits

a spin degree of freedom from the spin of the atoms.
Interactions between atoms then select out, in general, a
non-Abelian stabilizer subgroup H of symmetries which
leaves the condensate ground state order parameter locally
invariant. Vortices are labeled by elements of H, which we
call fluxes. Vortices with noncommuting topological fluxes
are called non-Abelian and are characterized by nontrivial,
path dependent, topological interactions.
Specifically, we consider a spin-2 Bose-Einstein con-

densate in a box trap in zero external magnetic field with the
particle interaction strengths chosen to realize the cyclic-
tetrahedral superfluid ground state phase, for whichH is the
non-Abelian binary tetrahedral symmetry group [55].
Figure 1 shows the outcome of a numerical experiment,

obtained by solving the spin-2 Gross-Pitaevskii equation
(see Supplemental Material [55]) in 2D governed by a five
component spinor wave function Ψ, that demonstrates the
exotic braiding and fusion dynamics of non-Abelian
vortices. The system is initialized at time t ¼ 0 in
Fig. 1(a) by creating four non-Abelian vortices in the
Bose-Einstein condensate by phase imprinting two vortex-
antivortex pairs [55]. Using pinning potentials that model
an array of Gaussian-shaped laser beams that repel atoms,
the vortices can be pinned and controllably moved around,
forming a braid in their space-time world lines as shown in
Fig. 1(a) [55]. A plat closure of the braid is realized by the
initial pair creation and final fusion of the vortex pairs. The
effects of braiding the vortices are observed at different
dimensionless times t̃ ¼ tω, where ω ¼ 2π × 5 Hz, after,
alternatively, (i) releasing the pinning potentials and meas-
uring the properties of the four vortices, see lower rows in
Figs. 1(b)–1(f), or, (ii) fusing the two vortex pairs first and
then measuring the result after releasing the pinning
potentials, see upper rows in Figs. 1(b)–1(f). The vortex
locations are visualized via their core structure, which may
have nonzero spin-singlet pair amplitude, jAj2, and/or
nonzero magnetization, Fz [55].
A detailed understanding of the observed dynamics comes

from labeling the flux of each vortex in Figs. 1(b)–1(f),
enabled by the vortex identification method described in
Ref. [54]. Briefly, at any moment in time, we are able to
interrogate the complete spinor wave function numerically
and, thus, measure a generalized geometric phase along
any closed path surrounding a vortex or multiple vortices
[54]. Such a measurement will reveal the enclosed net flux
and can be used for determining the outcomes of braidings
and fusions.

The vortex labels have the form �Xν
η, where Xη is a

Roman numeral denoting the fluxon part of the anyon type.
The state of each anyon is characterized by one of several
(conjugate) fluxes specified by the internal quantum
numbers ν and η, and the � sign [55]. Underpinning the
braiding dynamics is the long-range topological influence
between non-Abelian vortices [26,27,39]. For an anticlock-
wise elementary braid (exchange of a pair) of vortices with
fluxes ðγ1; γ2Þ their mutual topological influence converts
their fluxes to ðγ2; γ2γ1γ−12 Þ, [55]. The products and the
inverse in γ2γ1γ−12 are taken in the stabilizer groupH [55]. If
γ1 and γ2 do not commute, this mapping permutes the flux
of the second vortex within the set of fluxes associated with
its anyon type. The clockwise exchange realises the map
ðγ1; γ2Þ → ðγ−11 γ2γ1; γ1Þ. Braiding may also enact a local
unitary transformation on the wave function, which
reverses the sign of the vortex core magnetization, turning
a red core into a blue core, and vice versa, without changing
the value of their fluxes, as shown in Figs. 1(e) and 1(d).
The outcome of fusing two vortices is determined by an
ordered product of their two fluxes equivalent to their total
flux. Only vortices whose fluxes multiply to the identity
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FIG. 1. Braiding and fusion of non-Abelian fractional vortices.
(a) The paths of vortices embedded in a two-dimensional Bose-
Einstein condensate trace out world lines that form a braid whose
plat closure yields a link. The total condensate density is shown
for the initial (t̃ ¼ 0) and final (t̃ ¼ 132) states. (b) Spin-singlet
pair amplitude (left column) and magnetization (right column)
with vortex locations marked using circles and labeled by the
vortex (anyon) types. The upper rows correspond to the system
state just after the vortices have been fused pairwise and the lower
rows correspond to the state just before the fusion. The field of
view of each of the four frames in (b)–(f) corresponds to the
dashed rectangle shown in (a) where the intervortex separation is
27 μm. The dimensionless times t̃ ¼ tω of measurement of states
(b)–(f) are marked in (a).

PHYSICAL REVIEW LETTERS 123, 140404 (2019)

140404-2



element of H may annihilate, otherwise, the fusion results
in a remnant vortex. It is also possible for vortices with
commuting fluxes to pass through each other without
apparent interaction [25,54].
The initial vortex-antivortex pairs in Fig. 1(f) (lower row)

consist of three particle types: two vortices of the same type
(III0) with nonzero jAj2, green cores, and two of different
types (IV0 and VI−1) with Fz > 0, red cores. Initially, both
pairs annihilate upon being fused [Fig. 1(f), upper row], by
construction. An exchange of the two vortices in the middle
leads to the state measured at t̃ ¼ 20, shown in Fig. 1(e).
The braid swaps the positions of two vortices, which
trivially changes the pairwise fusion dynamics as neither
the green and red nor green and blue cored vortices
can annihilate. The braid between t̃ ¼ 60 and t̃ ¼ 100
consists of two exchanges (elementary braids) of the two
middle vortices resulting in the state shown in Fig. 1(c).
Importantly, although this braiding preserves the ordering
of the vortex types by returning them to their original
prebraiding positions at t̃ ¼ 60, the types of vortices
formed after fusion are different before (V0 and VII−1 at
t̃ ¼ 60) and after (IV0 and VI−1 at t̃ ¼ 100) the braiding.
Such vortex metamorphosis due to braiding is a hallmark of
non-Abelian anyons. The final exchange of the middle two
vortices results in the state at t̃ ¼ 132, shown in Fig. 1(b),
where the two non-Abelian vortex anyon pairs again
annihilate.
Vortex anyon model.—The cyclic-tetrahedral phase of a

spin-2 BEC supports seven distinct fluxon types, labeled as
Iη–VIIη [55]. Each of the seven types of fluxon comes with
several possible charge labels and, taking these into account,
we obtain the fusion and braiding rules for a complete anyon
model. Here, we will focus mostly on the fusion of the flux
types. The fusion outcomes of the lowest energy fluxons are
detailed in the table presented in the Supplemental Material,
Fig. S2 [55]. Although types IVη–VIIη vortices are non-
Abelian anyons, their fusion rules do not preserve the
winding number η of the anyons, complicating their poten-
tial use for topological quantum computation. However,
restricting to the set of three fluxons I0, II0, and III0,
hereafter, referred to as 1, σ, and τ, respectively, results in
a concise non-Abelian anyon model. The fusion of two
chargeless τ anyons may result in either a 1, σ, or τ anyon,
with the explicit fusion rule τ ⊗ τ ¼ N1

ττ1 ⊕ Nσ
ττσ ⊕ Nτ

τττ,
where the multipliers N1

ττ ¼ 6, Nσ
ττ ¼ 6, and Nτ

ττ ¼ 4 mean
that when anyons a and b fuse, they may form a c anyon in
Nc

ab distinct ways [55]. Note that the six distinguishable
ways the τ fluxons can fuse to the flux vacuum are further
split by the four possible resulting Cheshire charge states,
and that only one of those six fusion channels corresponds
to the true vacuum state having both vanishing flux and
charge [55]. The non-Abelian τ anyon is its own antiparticle
such that, upon fusion, two τ anyons may annihilate
each other. The remaining flux fusion rules of this anyon
model are; τ ⊗ σ ¼ τ, σ ⊗ σ ¼ 1, and x ⊗ 1 ¼ x, where

x ∈ f1; σ; τg. The anyons 1 and σ are Abelian with quantum
dimensions d1 ¼ dσ ¼ 1, respectively. The τ anyon is the
non-Abelian (fluxon) anyon of the theory with a quantum
dimension, dτ ¼ 6, larger than both the Fibonacci and Ising
anyon models.
Topological qubits.—The different fusion outcomes of the

anyons define a fusion path, equivalent to a set of topologi-
cally distinct states, which can be used for encoding quantum
information. We are inspired by the Fibonacci anyon model
where the fusion of three anyons allows a topological qubit to
be defined as a two-level system plus one noncomputational
state. In the case of three τ fluxons, the number of distinct
fusion paths in which information could be stored is
significantly larger than in the Fibonacci anyon model.
Nevertheless, for the sake of demonstration, we consider
braiding operations with three fluxons that involve only a
subset of the many states in the full fusion space and,
therefore,may be conveniently discussed in terms of effective
qubits. A natural choice for the zero state corresponds to the
creation of two pairs of τ fluxons from the true vacuum. The
rightmost of the four anyons will not be part of the qubit and
will not take part in any braiding processes we consider. The
zero state of the qubit is, then, j0i ¼ 1

6

P
γ1;γ2∈III jγ1; γ−11 ; γ2i,

corresponding to three τ anyons with fluxes γ1, γ−11 , and γ2,
respectively. A convenient choice for the second qubit state is
j1i ¼ 1

6

P
γ1;γ2∈III jγ1; γ1; γ2i, corresponding to the fusion of

the τ fluxon pair to the σ fluxon.
Figure 2 demonstrates the action of manipulating the

state of such a topological qubit by controllable braiding of
the anyons. Initially, the fluxons are prepared in the j0i
state, which, in practice, could be achieved by nucleating
two vortex-antivortex pairs that introduces a fourth, sur-
plus, anyon which is disregarded in this numerical experi-
ment without consequence.
A unitary operation, encoded by the braid in Fig. 2(a), is

applied to the fluxons by moving the pinning potentials to
exchange the second and third anyons within the qubit
structure twice. Once the braiding has been completed,
a measurement of the state is made by fusing the first and
second anyons from the left of the condensate and
observing the remaining core structures shortly after the
pinning potentials have been withdrawn. Prior to the fusion,
the three τ anyons are identified by the green jAj2 cores, as
shown in Fig. 2(b). After the braiding, the measurement
outcome depends on the topological influence between the
exchanged anyons. The braid maps the j0i state to a
superposition

X

γ1 ;γ2∈III
γ1γ2¼γ2γ1

jγ1; γ−11 ; γ2i
2

ffiffiffi
3

p þ
X

γ1 ;γ2∈III
γ1γ2≠γ2γ1

jγ1; γ1; γ2i
2

ffiffiffi
6

p ; ð1Þ

where the two sums contain the combinations of fluxeswhich
braided with trivial and nontrivial topological influence,
respectively. The probability p that a measurement would
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record complete annihilationpð0Þ ¼ 1=3 or the formation of
a σ fluxon pð1Þ ¼ 2=3 after the braiding is obtained by
projecting the braided superposition state onto the two qubit
basis states j0i and j1i. Prior to the fusion measurement, the
two possibilities are indistinguishable by any local obser-
vation. In general, braiding, with respect to this basis,
would introduce significant leakage into the noncomputa-
tional fusion paths even for the case of a single qubit.
However, this is not a real problem as we only restricted to a
two dimensional space for illustrative purposes. Any realistic
implementation would use the full fusion space for
computations.
In the numerical experiments, we simulate two

specific components of the j0i state, those with fluxes
ðIIIx0;−IIIx0; IIIx0Þ and ðIIIx0;−IIIx0; IIIy0Þ, such that the braid
acts on these basis states in a deterministic manner. In the
first case, the exchanged anyons commute so the braid
realizes a trivial topological influence, and the fusion

measures the j0i state, shown in Fig. 2(c), characterized
by a single green core. However, in the latter case, they do
not commute so the nontrivial topological influence
changes the signs of the anyons, and the fusion measures
the state j1i of the topological qubit. Such a measurement
of the j1i state is illustrated in Fig. 2(d) and corresponds to
the observation of two green vortex cores, with the addi-
tional filled core corresponding to a σ anyon formed in the
fusion of the two τ anyons.
If spurious vortex-antivortex pairs were nucleated

during the braiding process, they could, in principle, braid
with the system vortices leading to topological decoherence
via quasiparticle poisoning [15]. Consequently, the fusion
outcomes could no longer be uniquely identified by the
simple green or no green blob signal illustrated in Fig. 2 [55].
However, this does not occur in our adiabatic zero-
temperature braiding simulations and we numerically mea-
sure the fluxes of the vortices explicitly to verify that the
simple blob measurement, indeed, faithfully identifies the
fusion outcomes in these simulations.
Cheshire charge.—We have discussed the topological

qubit at the fluxon level, ignoring the chargeons. However,
the states considered in the single qubit simulations are τ flux
eigenstates, which correspond to charge superposition states.
Here, the charge arises as Cheshire charge [46,47,76], which
maybe revealedwhen thevortices are annihilated causing the
delocalized Cheshire charge to appear. After a Cheshire
charge localizes to a chargeon, it could reform as a pair of
Alice vortices or a propagating Alice ring [47]. In our single
qubit simulations, we have observed a propagating ring-
shaped soliton structure in the magnetization density of the
condensate, Figs. 3(a)–3(c) [55]. This observed signature
may be related to the phenomenology of Cheshire charges.
Anyons based on finite groups that are solvable but not

nilpotent are capable of universal quantumcomputation [77].
Since the binary tetrahedral group does satisfy these criteria,
it may be a fruitful platform for developing a universal
quantum computer. A method for generating multiple non-
Abelian vortices has been outlined in [53]. However, to
realize such vortices experimentally, a series of engineering
challenges must be confronted [55]. To ensure the non-
Abelian topology, our numerical experiments employ spin

(a) (b) (c)

FIG. 3. Signatures of a Cheshire charge. Frames (a)–(c) show
the x component of the magnetization density of the condensate
at the end of the simulation of Fig. 2(c). The time interval
between the frames is δt ≈ 16 ms. The circular markers denote
the locations of the vortex pinning sites. The expanding ring
shaped magnetic soliton structure is emitted due to the fusion of
two fluxons [55].

(b)

(c)

(d)

(a)

FIG. 2. Single qubit braiding operation. (a) The paths of the
three τ anyons trace out braided world lines enacting a unitary
operation on the initial state. Time flows upward. The total
condensate density is shown for the initial state. The overlayed
concentric ellipses denote the orientation of the qubit as a
graphical representation of the bracket notation used in the text.
(b) Spin-singlet pair amplitude of the qubit just before the fusion.
The rounded rectangle marks the boundary of the condensate, and
the vortex locations are denoted by the circles, the intervortex
separation is 27 μm. (c) A fusion outcome corresponding to the
annihilation of the first two anyons as in the j0i state [55]. (d) A
fusion outcome corresponding to the nonannihilation of the first
two anyons as in the j1i state [55]. Data in (b)–(d) are thresholded
relative to half the maximum value in (b) and any maxima
within the vortex location markers are mapped to the solid green
circles [55]. The specific fluxes of the three initial state vortices in
(c) are ðIIIx0;−IIIx0; IIIx0Þ, and in (d), they are ðIIIx0;−IIIx0; IIIy0Þ.
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interaction strengths which are not currently achievable in
experiment. However, a recent proposal by Hurst and
Spielman, Ref. [78], may provide an experimentally realiz-
able pathway for effectively tuning the spin interactions.
Promisingly, many additional non-Abelian phases have been
predicted for higher spin BEC systems [38], which may
enable amore accessible experimental route for creating non-
Abelian vortex anyons. To surpass the inertial limitations of
massive vortices [79], including the adiabaticity speed limit
of vortex braiding [80], synthetic non-Abelian fluxons could
potentially be designed and engineered using novel artificial
gauge field techniques [81,82]. The ability to perform
quantum information processing with the non-Abelian
vortices may be compromised by the substantial challenge
of creating and maintaining true quantum superpositions
with a macroscopic number of atoms in a Bose-Einstein
condensate.However,we conclude that non-Abelianvortices
in spinor Bose-Einstein condensates hold promise for a
tangible demonstration of the underlying principles of
topological quantum computation and should be pursued
further.
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