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We present quantum Monte Carlo simulations for the chiral Heisenberg Gross-Neveu-Yukawa quantum
phase transition of relativistic fermions with N ¼ 4 Dirac spinor components subject to a repulsive, local
four fermion interaction in ð2þ 1ÞD. Here we employ a two-dimensional lattice Hamiltonian with a single,
spin-degenerate Dirac cone, which exactly reproduces a linear energy-momentum relation for all finite size
lattice momenta in the absence of interactions. This allows us to significantly reduce finite size corrections
compared to the widely studied honeycomb and π-flux lattices. A Hubbard term dynamically generates a
mass beyond a critical coupling of Uc ¼ 6.76ð1Þ as the system acquires antiferromagnetic order and SU(2)
spin rotational symmetry is spontaneously broken. At the quantum phase transition, we extract a self-
consistent set of critical exponents ν ¼ 0.98ð1Þ, ηϕ ¼ 0.53ð1Þ, ηψ ¼ 0.18ð1Þ, and β ¼ 0.75ð1Þ. We provide
evidence for the continuous degradation of the quasiparticle weight of the fermionic excitations as the
critical point is approached from the semimetallic phase. Finally, we study the effective “speed of light” of
the low-energy relativistic description, which depends on the interaction U, but is expected to be regular
across the quantum phase transition. We illustrate that the strongly coupled bosonic and fermionic
excitations share a common velocity at the critical point.
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Right at the interface between bosonic spin and fermionic
physics lies the Gross-Neveu-Yukawa (GNY) field theory,
which is believed to capture the complex interplay of bosonic
and fermionic (quantum) critical fluctuations giving rise to a
large set of universal critical exponents [1,2]. The GNY
Lagrangian describes relativistic fermions, which interact
with a multicomponent bosonic field. For sufficiently strong
interactions, the system undergoes a phase transition from a
semimetal of massless Dirac fermions to a symmetry broken
phase with massive fermionic excitations, in which the order
is captured by a Z2, OðNÞ, or SUðNÞ symmetric order
parameter. The GNYuniversality class comprises the critical
properties of these phase transitions, based not only on the
symmetry of the order parameter alone, but it must include
the symmetry (degeneracy) of the fermions involved and as
such cannot be described within the Landau paradigm of
phase transitions. In recent years it has become evident that
this physics of relativistic fermions is far from confined to
high-energy physics, but manifests in many two- and three-
dimensional condensed matter systems [3–7], most promi-
nently among them the carbon allotrope graphene [8] and
magic angle twisted bilayer graphene [9–14].
A large number of models in condensed matter physics,

which describe the dynamical generation of a gap in
interacting Dirac fermions, are widely believed to share
the same universal properties at criticality as described by
the GNY field theory. The correspondence between the
condensed matter models and the GNY field theory can be
shown explicitly at low energies [15,16]. Where the chiral

Ising (Z2) GNY transition [17–30] and the chiral-XY [O(2)
or U(1)] GNY transition [17–19,30–43] have been inves-
tigated extensively, far fewer results exist for the much
more challenging chiral Heisenberg [O(3) or SU(2)] GNY
transition in ð2þ 1ÞD [15,17,30,44–50], which we focus
on in this Letter.
The issue shared among all the investigations is the

apparent disparity between the estimates for the critical
exponents, not only between complementary methods, but
even within different Monte Carlo simulations. The latter
could be attributed to the fact that only a small region
of the Brillouin zone (BZ) of common lattices, such as
the honeycomb lattice and π flux (staggered fermions),
actually displays relativistic behavior at low energies
[cf., Figs. 1(d)–(f)], and large finite size lattices are
required in order to obtain a sufficiently high momentum
resolution at low energies to guarantee asymptotic scaling
at criticality.
In this Letter, we set out to minimize the finite size

effects by implementing a single Dirac cone on the lattice,
which allows us to maximize the portion with a relativistic
dispersion in the BZ. In addition, rather than distributing
the fermion species across different momenta, such as in
the implementation of staggered fermions (i.e., the honey-
comb or π-flux lattice), or reducing the BZ to patches in
momentum space [51], a single Dirac cone is the closest
representation of the continuum Dirac operator [52–56].
Furthermore, a single spin-degenerate (Nf ¼ 2) Dirac
cone constitutes the smallest possible number of fermions

PHYSICAL REVIEW LETTERS 123, 137602 (2019)

0031-9007=19=123(13)=137602(7) 137602-1 © 2019 American Physical Society

https://orcid.org/0000-0001-9619-6762
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.137602&domain=pdf&date_stamp=2019-09-25
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevLett.123.137602


species N ¼ 2Nf ¼ 4 or components of the Dirac spinor
representation, for which an SU(2) symmetric order
parameter can be formulated on a lattice. As such, our
investigation provides a benchmark for complementary
approaches such as ϵ and 1=N expansions, where for
small fermion species numbers their estimates for the
critical exponents vary the most.
Model and Hamiltonian.—Here we consider a

Hamiltonian formulation of relativistic massless fermions
with a perfect Dirac cone in energy-momentum space in
ð2þ 1ÞD. For each fermion flavor σ ∈ f1;…; Nfg the free
Hamiltonian for a single Dirac cone on a square lattice with
the primitive vectors in the x and y directions and unit
lattice constant reads

Htσ ¼ −v0F
XL2

i¼1

�
i

XL=2

x¼−L=2
tðxÞða†iσbiþx;σ − b†iþx;σaiσÞ

þ
XL=2

y¼−L=2
tðyÞða†iσbiþy;σ þ b†iþy;σaiσÞ

�
: ð1Þ

Here a†iσ (b
†
iσ) creates an electron with flavor σ in an orbital

a (b) of unit cell i, while iþ x denotes the unit cell in the x
direction at a distance jxj. The discrete inverse Fourier
transform of the Dirac operator yields the finite size
hopping amplitudes tðrÞ ¼ ð−1Þrπ=½L sinðrπ=LÞ�, r ≠ 0,
which in the thermodynamic limit (TDL) L → ∞ implies
that the hopping amplitude decays as tðrÞ ¼ ð−1Þr=r.
The corresponding single-particle spectrum is given by
ε�ðkÞ ¼ �v0Fjkj with a 2Nf-fold degeneracy at
k ¼ ð0; 0Þ. In the following we choose the Fermi velocity

v0F ¼ 1 as a unit of energy. This setup may be interpreted as
a square lattice bilayer with 2L2 sites with bipartite
interlayer hopping. The lattice derivative in Eq. (1) is
the Hamiltonian formulation of SLAC fermions [57]. While
SLAC fermions have been shown to be problematic in
gauge theories [58], they have been successful in simu-
lations of supersymmetric Yukawa, Wess-Zumino, and
Thirring models [40,58–63]. A variation, which corre-
sponds to spinless fermions, has recently been used in
Ref. [38] to produce highly accurate results when compared
against exactly known critical exponents. SLAC fermions
avoid the Nielsen-Ninomiya theorem [64–66] by violating
locality on finite size lattices. Locality of the Dirac operator
is recovered in the infinite volume limit for most of the
BZ, while potentially problematic properties are confined
to the singular boundaries of the system [67]. We thus
monitor the single-particle excitations, in particular, close
to the boundary of the BZ for potentially interfering low-
energy modes.
In order to dynamically gap out the chiral fermions and

to drive the system through a quantum phase transition, we
augment the free Hamiltonian with a local Hubbard-type
repulsion H ¼ P

σ¼1;2Htσ þ ðU=2ÞPi;c ðni;c − 1Þ2, where
ni;c ¼

P
σ¼1;2 c

†
iσciσ is the local density electrons in orbital

c ∈ fa; bg. At strong coupling U ≫ v0F and half filling, the
Hamiltonian reduces to a bilayer Heisenberg model with
antiferromagnetic Heisenberg interactions only between
the layers. The anticipated Dirac semimetal to antiferro-
magnet (AFM) quantum phase transition is expected to be
in the N ¼ 4 chiral Heisenberg GNY universality class.
Finally, the Hamiltonian Htσ is represented by a

Hermitian differentiation matrix and the Hubbard interac-
tion can be decoupled at the cost of introducing a discrete
auxiliary field via the Hubbard Stratonovich decomposi-
tion, which allows us to perform large-scale, sign-problem-
free auxiliary-field quantum Monte Carlo (QMC) simu-
lations at zero temperature [26,68–71].
QMC simulation results.—We track the emergence of

long-rangeAFMorder bymeasuring the spin structure factor
SAFMðkÞ≡P

r e
ik·rhSðrÞ · Sð0Þi=L2, where SðrÞ ¼ Sra −

Srb is the unit cell AFM order parameter with the spin
Sra ¼ 1

2
a†rασαβarβ at position r, orbital a, and σ denotes the

vector of the three Pauli matrices. The evolution of the
squared finite size magnetization m2 ¼ SAFMð0Þ=L2 is
presented in the Supplemental Material [72]. The critical
point beyond which the fermions acquire mass can be
precisely determined with the help of the RG invariant

correlation ratio Rðn1;n2Þ
m2 ¼ 1 − SAFMðQþ n1b1 þ n2b2Þ=

SAFMðQÞ, where b1 and b2 denote the reciprocal lattice
vectors [74,75]. Rm2 intersects for different L at the critical
coupling point and at a universal but geometry-dependent

value R�
m2 . We opt for Rð1;1Þ

m2 with the least drift of the finite
size crossing points shown in Fig. 2(a) (cf., Supplemental
Material [72]) and fit the data with the finite size scaling
(FSS) ansatzRm2ðu;LÞ¼fR0 ðuL1=νÞþL−ωfR1 ðuL1=νÞ, where

(a) (b) (c)

(d) (e) (f)

FIG. 1. The momentum resolved single-particle gap from QMC
simulations (a) in the chiral limit (b) at the critical point, and (c) in
the massive phase in the first Brillouin zone for an L ¼ 19
system. The dispersion illustrates the interaction induced sponta-
neous mass generation for sufficiently strong interactions and the
renormalization of the bandwidth across the quantum phase
transition. The finite size momentum resolution for an L ¼ 18
(d) honeycomb lattice (e) π-flux lattice (staggered fermions), and
for (f) SLAC fermions superimposed on the lines of constant
energy in the Brillouin zone.
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u ¼ U −Uc and we series expand the scaling functions fR0
and fR1 [76]. Adding corrections to scaling yields series
expansion coefficients of fR1 and values for ω, which vanish
within error bars and significantly degrades the quality of the
data collapse. This behavior is in accordancewith the lack of
drift for larger lattices and reduces our scaling ansatz to the
first term without scaling corrections. For a fit to the data of
systemsL ≥ 7we obtain the critical couplingU ¼ 6.759ð1Þ
and the exponent associated with the correlation length
ν ¼ 0.977ð5Þ, which allows us to collapse the data in Fig. 2.
Scaling the squared magnetization as a function of a

dimensionless quantity, such as a correlation ratio Rm2 ,
allows us to eliminate the exponent ν from scaling and the
FSS ansatz reduces to m2ðRm2 ; LÞ ¼ L1−ηϕfm0 ðRm2Þ, where
we assume z ¼ 1 [46,76]. Figure 3 shows the fit to the data,
where we have expanded fm0 ðRm2Þ up to second order.
We obtain a stable estimate ηϕ ¼ 0.531ð1Þ; higher expan-
sion orders do not alter the result and corrections to scaling
behave similar to the case for ν above. The inset of Fig. 3
shows the compatibility of our estimate with a commonly
used approach to extract ηϕ from the scaling of the
magnetization or the spin correlations at the maximum
distance CðrmaxÞ, which decay proportional to L−ð1þηϕÞ at
the critical point. To check the consistency of the extracted
exponents, we compute the critical exponent of the order
parameter β ¼ ð1þ ηϕÞν=2 ¼ 0.748ð4Þ and successfully
perform a data collapse of the squared magnetization in
Fig. 2. In addition we compare with the data collapse
obtained using a Gaussian process regression introduced in
Ref. [77]. The regression assumes only the smoothness of
the scaling function m2ðU;LÞ ¼ L−2β=νfm0 ½ðU −UcÞL1=ν�,
rather than a specific polynomial form and agrees

within error bars with our estimate β=ν ¼ 0.766ð6Þ
(cf., Supplemental Material [72]).
Following the same procedure, we extract the anomalous

dimension of the fermions ηψ from the off-diagonal
elements of the single-particle Green’s function GabðkÞ ¼
ha†kbki with the FSS ansatz GabðkminÞðRm2 ; LÞ ¼ L−ηψ

fG0 ðRm2Þ, where we again assume z ¼ 1 [47,76]. At zero
momentum, Gabð0Þ ¼ 0, as Gaað0Þ ¼ Gbbð0Þ ¼ 1=2 mea-
sures the local density per flavor, such that one has to resort
to using the smallest lattice momentum kmin ¼ ð2π=L; 0Þ,
where kmin → 0 in the TDL. Here the finite size corrections
require us to neglect system sizes L < 11 in order to avoid
scaling corrections. The fit to the data yields the estimate
ηψ ¼ 0.177ð1Þ (cf., Supplemental Material [72]).
The off-diagonal single-particle Green’s function is pro-

portional to the quasiparticle weight (residue of the quasi-
particle pole)Zkmin

¼ 2GabðkminÞ [47,78,79]. As the critical
point is approached from the noninteracting limit, growing
correlations lead to increasing fluctuations in the semimetal
near the Fermi energy and the well-defined fermionic
quasiparticle character of the chiral limit Zkmin

¼ 1 is
monotonously diminished Zkmin

→ 0 as U → Uc [44,78].
In order to show the consistency of our estimates, we plot the
expected behavior of the residue of the quasiparticle pole
Zkmin

∼ ðUc −UÞνηψ in Fig. 4(b) using the previously
extracted exponents (dashed line). Beyond the critical point,
the Fermi point surface is gapped out as the single-particle
gap Δsp ∼ ðU −UcÞzν (not shown), and the fermionic pri-
mary excitations are replaced by the Goldstone bosons,
which originate from the spontaneous continuous symmetry
breaking of the spin rotational symmetry in the TDL.
In addition, we determine the single-particle gap ΔspðkÞ

from a fit to the asymptotic long imaginary-time

FIG. 2. The correlation ratio close to the critical point from
which we extract the critical exponent ν from a fit to the data.
(Inset) Data collapse of the correlation ratio (left scale) and the
squared magnetization (right scale) using the critical exponents ν
and ηϕ extracted from the data in the main panel and Fig. 3,
respectively. Dotted lines indicate the scaling functions.

FIG. 3. Fit of the finite size scaling ansatz to the squared
magnetization of the single-particle correlation function in order
to extract the bosonic and fermionic anomalous dimensions ηϕ.
(Inset) Illustrates the compatibility of the estimated exponents
with the finite size decay behavior of the correlations at the largest
distance.
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behavior of the single-particle Green’s functionGaaðk; τÞ ¼
ha†kðτÞakð0Þi ∝ exp½−τΔspðkÞ� [80]. In the Supplemental
Material [72] we provide evidence for the relativistic finite
size scalingΔsp ∼ L−z close to criticality,which validates our
assumption that z ¼ 1. Cross sections of the momentum
resolved excitation gap in Fig. 1 are shown for different
values of U in Fig. 4(a). The bandwidth decreases signifi-
cantly with growing U, yet the single-particle excitations
close to the boundary of the BZ converge to a finite value at
rather high energies, as indicated by the arrow forU ¼ 6.76
in the TDL. This implies that no additional zero modes
are introduced by correlations [54,56]. In order to study
the impact of interactions on the low-energy dispersion,
we fit the relativistic single-particle dispersion ΔspðkÞ ¼
½Δspð0Þ2 þ ðvFðUÞkÞ2�1=2 to the data formomentawithin the
gray shaded region to estimate the Fermi velocity vF.
This approach is validated by the expected spectrum both

in the semimetallic and the symmetry broken phase. Exactly
at the quantum critical point the spectrum is more complex
[81,82] and the excitation velocity corresponds to the speed
of light of the conformal field theory. As illustrated in
Fig. 4(b) in the approach of the phase transition from the
noninteracting limit the speed of light remains approximately
constant. In our case vF ≈ v0F ≈ 1, which is not necessarily
the case in general—the RG scaling ansatz for the quasi-
particle residue simply implies vF ∼ ðUc −UÞνðz−1Þ to
remain regular in the vicinity of the relativistic critical point
[44]. Beyond the critical point, the fermionic primary
excitations are replaced by their bosonic counterpart such
that close to Uc the spin wave velocity vϕ ≈ vF. The inset
in Fig. 4(b) illustrates the similar excitation velocities by
comparing the momentum dependence of the spin gap
ΔsðkÞ ∝ vϕk with the Fermi velocity v0F [83].
Discussion.—Figure 5 shows our results for the critical

exponents in the context of recent results for different
numbers of fermion species. For each case we have
consistent estimates for the large-N limit from ϵ expansion
[17,30] and 1=N corrections [48]. The same holds for the
limit N ¼ 0 where no fermions couple to the bosonic order
parameter and high-precision estimates from Monte Carlo
simulations and conformal bootstrap calculations exist
[84,85]. For relatively small numbers of fermion species,
N ≲ 16, estimates from Monte Carlo (MC) simulations
[41,46,50] and analytic expansions differ significantly. For
the analytical expansion results we include results at fixed
expansion order (ϵ ¼ 1) as indicated (lines), the range of
values spanned by the Padé approximant with all pole-free
combinations of numerator and denominator order from
one to the maximum expansion order available (shaded-
hatched areas), as well as estimates from functional RG
[22,49]. The MC results generally follow the trends set by
the analytical predictions, but for ηϕ in the 1=N approxi-
mation. While the MC data are scattered, there appears to
be a common trend for ν; ηϕ ≲ 1, which roughly follows the
ϵ expansion at fixed Oðϵ2Þ. The tension between different
results from MC simulations could be attributed to the

(a) (b)

FIG. 4. (a) The single-particle gap along kx (ky ¼ 0) for
different interactions strengths for an L ¼ 19 system from which
the effective speed of light (equal to the Fermi velocity vF at
U ¼ 0) has been extracted from a fit of the relativistic dispersion
to the data points. (b) The quasiparticle weight Zkmin

ðUÞ and the
effective speed of light vFðUÞ for different system sizes and the
momentum dependence of the spin gap Δs (inset).

(a) (b) (c)

FIG. 5. Chiral Heisenberg GNYuniversality class. Comparison of estimates for (a) the correlation-length exponent 1=ν, (b) the boson
anomalous dimension ηϕ, and (c) the fermion anomalous dimension ηψ for different numbers of fermion species, from Monte Carlo
simulations (filled and open markers) [41,46,50,84], conformal bootstrap [85], and functional RG (þ, ×) [22,49], as well as fixed order
expansions and Padé approximants for the series from ϵ expansion [17,30] and 1=N expansion [48] (lines and shaded areas).
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possibility that the lattices’ sizes reached so far are simply
not within the asymptotic scaling regime. Also, different
implementation of lattice fermions may avoid FSS con-
tributions from nonleading irrelevant fields, as has been
seen recently in the context of quantum spin models [86].
Most importantly, the different maximum system sizes used
limit the momentum resolution of the relativistic dispersion
at low energies. This is in contrast to SLAC fermions,
which appear to be subject to smaller finite size corrections,
which we further quantify for several correlation ratios in
the Supplemental Material [72].
Conclusion.—We have presented the first QMC inves-

tigation of the critical properties of the N ¼ 4 chiral
Heisenberg GNY quantum phase transition in ð2þ 1ÞD.
To account for the ambiguity in the choice of the correlation
ratio, fit ranges, and included lattice sizes, we report
our conservative estimates for the critical exponents
ν ¼ 0.98ð1Þ, ηϕ ¼ 0.53ð1Þ, and ηψ ¼ 0.18ð1Þ. The lattice
realization of a single Dirac cone allowed us to significantly
reduce finite size effects and access the regime of small
fermion species numbers, which is essential to sort out
the disparate results from complementary methods. Our
approach opens the possibility to simulate the previously
unexplored N ¼ 2 chiral Ising GNY transition and can be
generalized to higher numbers of fermion flavors Nf. The
single Dirac cone can be further generalized to anisotropic-,
semi-, and birefringent Dirac semimetals [87–90], which
we leave to future investigations.
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