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One-dimensional fracton systems can exhibit perfect localization, failing to reach thermal equilibrium
under arbitrary local unitary time evolution. We investigate how this nonergodic behavior manifests in the
dynamics of a driven fracton system, specifically a one-dimensional Floquet quantum circuit model
featuring conservation of a Uð1Þ charge and its dipole moment. For a typical basis of initial conditions, a
majority of states heat up to a thermal state at near-infinite temperature. In contrast, a small number of states
flow to a localized steady state under the Floquet time evolution. We refer to these athermal steady states
as “dynamical scars,” in analogy with the scar states observed in the spectra of certain many-body
Hamiltonians. Despite their small number, these dynamical scars are experimentally relevant due to their
high overlap with easily prepared product states. Each scar state displays a single agglomerated fracton
peak, in agreement with the steady-state configurations of fractonic random circuits. The details of these
scars are insensitive to the precise form of the Floquet operator, which is constructed from random unitary
matrices. Rather, dynamical scar states arise directly from fracton conservation laws, providing a concrete
mechanism for the appearance of scars in systems with constrained quantum dynamics.
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Introduction.—Quantum many-body systems can host
many unusual properties in their ground state, such as
fractionalized quasiparticles and protected degeneracies.
In contrast, highly excited states were long thought to be
relatively boring, on the grounds that they should behave
like thermal states, as dictated by the eigenstate thermal-
ization hypothesis (ETH) [1–3]. In recent years, however,
new types of quantum many-body systems have been
studied which violate the ETH. The most common example
is many-body localization (MBL) [4–6], typically driven by
the effects of disorder, in which essentially all eigenstates
are athermal, characterized by an extensive number of
emergent local integrals of motion.
Recently, a new type of nonergodic behavior has been

observed in the form of quantum many-body scars [7–10].
In contrast to the fully localized spectrum of MBL systems,
scars are a small number of localized states in an otherwise
thermalizing spectrum. While scars constitute a vanishing
fraction of the spectrum in the thermodynamic limit, they
are of direct experimental relevance, since they have high
overlap with easily prepared product states. Indeed, scar
states have been proposed as an explanation for the long-
time oscillations observed in Rydberg atom chains [7,11].
The scar phenomenon, first encountered in the Affleck-
Kennedy-Lieb-Tasaki model [12], arises in a variety of
many-body Hamiltonians [13–15]. In this Letter, we
demonstrate a fundamentally new type of scars, robust
against arbitrary driving, which we refer to as “dynamical
scar states,” arising in systems subject to certain conserva-
tion laws. Specifically, this small set of athermal states
manifests in the steady-state configurations of a Floquet

system as a consequence of a new mechanism for locali-
zation encountered in the context of fracton physics.
A fracton [16] is an emergent quasiparticle found in

various condensed matter contexts, such as spin liquids
[17–22] and crystalline defects [23–27], exhibiting a
characteristic immobility arising from conservation of
higher moments, such as a dipole moment [28,29]. This
constraint inhibits thermalization, since a fracton cannot
freely move around the system. In three spatial dimensions,
a system of fractons will eventually thermalize, albeit
logarithmically slowly, in a manifestation of glassy dynam-
ics [17,30,31]. In one-dimensional fracton systems, how-
ever, a fracton can forever remain localized at its initial
position, even under random local unitary time evolution
[32]. Unlike conventional localization, where particles
are independently localized, a collection of fractons will
agglomerate into a single peak at their center of mass, as a
consequence of their gravitational attraction [33]. Notably,
only states featuring nonzero fracton charge can remain
localized, while dipole states quickly thermalize.
The localization observed in random unitary circuits is

expected to also manifest in the steady-state dynamics of
Floquet fracton systems, which feature the extra constraint
of conservation of quasienergy. However, since fracton
states can be localized while dipole states thermalize, it is
clear that such a system cannot be fully localized. Rather,
we expect to see a special set of athermal states, as in the
framework of many-body scars. To consider the connection
between fractons and scars in detail, we study a one-
dimensional Floquet system with the mobility restrictions
of fractons, implemented via quantum circuits. In addition
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to the charge and dipole conservation characteristic of
fracton systems, we add translation invariance, to rule
out the possibility of conventional disorder-driven locali-
zation, but otherwise allow the unitary gates to be chosen
randomly.
To determine the steady-state dynamics of this Floquet

fracton system, we begin by finding the spectrum of the
Floquet operator, which contains many ETH-violating
eigenstates, as discussed in the context of Hilbert space
“fragmentation” [34,35]. We then consider a more generic
basis of initial conditions which are not eigenstates of the
Floquet evolution. For a typical basis of initial conditions,
the majority of states heat up to an entropy-maximizing
thermal state at near-infinite temperature. In contrast, a
small number of states remain stably localized under
the driving, characterized by subthermal entanglement.
We refer to these athermal steady states as “dynamical scar
states,” in analogy with the scar eigenstates of Hamiltonian
systems. There is one scar state in each sector of a
particular charge and dipole moment, characterized by
an agglomerated fracton peak. Like conventional
Hamiltonian scars, the number of scar states grows
algebraically with system size, L3, while the number of
thermalizing states grows exponentially, 3L. However, this
new type of dynamical scar state possesses several unusual
features which have not previously been observed. Unlike
conventional scar systems, the athermal behavior of
dynamical scars persists under generic driving starting
from arbitrary initial conditions. Also, these localized
states appear as a direct consequence of conservation of
the dipole moment [32], without relying on specific
features of a Hamiltonian, such as a projective structure.
They also represent the first example of athermal states
exhibiting gravitational clustering. In these ways, dynami-
cal scar states push the field of nonergodic physics in an
interesting new direction.
Fractonic Floquet quantum circuit model.—We work

with a one-dimensional chain of L sites, with a single
spin-1 on each site, and periodic boundary conditions. We
time evolve with a random quantum circuit of local unitary
gates, constrained to locally conserve the total z component
of the spins (which serves as a conservedUð1Þ charge), and
also the total dipole moment of this effective charge
(evaluated with respect to an arbitrary origin, and con-
served mod L due to periodic boundary conditions). Instead
of a completely random unitary circuit, as in Ref. [32], we
impose discrete time-translation symmetry. Using a stro-
boscopically repeating circuit allows us to study eigenstates
and eigenvalues, i.e., providing more tools compared to a
simple random circuit. We consider a translation-invariant
Floquet random circuit (Fig. 1) to exclude the possibility of
localization for conventional reasons. The time evolution is
governed by a circuit with staggered layers of three-site
unitary gates. The time evolution unitary is given by
UðtÞ ¼ Q

t
t0¼1

Uðt0; t0 − 1Þ, where

Uðt0; t0 − 1Þ ¼

8>>>>><
>>>>>:

Q
i
UA

3i;3iþ1;3iþ2 if t0 mod 3 ¼ 0

Q
i
UB

3i−1;3i;3iþ1 if t0 mod 3 ¼ 1

Q
i
UC

3i−2;3i−1;3i if t0 mod 3 ¼ 2;

ð1Þ

and UA, UB, and UC are chosen at random for a given
realization, but remain fixed throughout that run.
Steady states.—To study the dynamics of our Floquet

fractonic circuit, we begin by finding the eigenstates of the
Floquet operator, which are trivially steady states. If the
system is initialized in any of these eigenstates, it will
remain in that state for all later times. These eigenstates
can be characterized in terms of their entanglement. In
Fig. 2(a), we plot the bipartite entanglement entropy of
these eigenstates as a function of their quasienergy (over
½−π=3; π=3�), for a single run, i.e., a single choice of UA,
UB, and UC. (Quasienergy is the conserved quantity
associated with discrete time-translation symmetry. A state
jψi with quasienergy ϵ satisfies UðTÞjψi ¼ eiϵT jψi.) In
contrast to a simple thermalizing system, in which most
eigenstates have near-maximal thermal entanglement, the
eigenstates of our Floquet fractonic circuit have a wide
range of entanglement values. In particular, there are a
number of zero-entanglement product states in the spec-
trum, arising as a consequence of the Hilbert space
“fragmentation” discussed in Refs. [34,35].
While the eigenstates jψni of the Floquet operator

exhibit a large degree of athermal behavior, it is important
to consider a more general set of initial conditions. Say we
prepare the system in a state from a different basis, jϕmi,
prior to applying a Floquet fractonic circuit. For example,
we could prepare the system in an eigenstate of some other
Hamiltonian. After time evolving by time t, the state of the
system will be

jΦmðtÞi ¼
X
n

eiϵntjψnihψnjϕmi ð2Þ

FIG. 1. Floquet fractonic circuit (period 3): each site is a three-
state qudit. Each gate (colored box) conserves Stotalz and P⃗total of
the three qudits it acts upon. The block diagonal Haar-random
unitary with its nontrivial blocks is also shown. All gates of a
particular color are identical.
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where ϵn is the quasienergy of eigenstate jψni. We now
form the density matrix, ρmðtÞ ¼ jΦmðtÞihΦmðtÞj, and take
its time average to find the steady state of the Floquet time
evolution. Assuming negligible degeneracies in the spec-
trum [as borne out by the data in Fig. 2(a)], the steady state
of the system is given by [36]

ρ̄m ¼
X
n

jAmnj2jψnihψnj ð3Þ

where Amn ¼ hψnjϕmi. We therefore see that we can form
steady states of the Floquet fractonic circuit by simply
taking linear combinations of the density matrices of the
eigenstates.
We first investigate a set of initial conditions which are

only mildly changed from the eigenstate basis. We consider
initializing our system in states jϕmi which are random
superpositions of eigenstates only within some quasienergy
window Δε, such that eigenstates are recovered in the
Δε → 0 limit. In Fig. 2(b), we plot the bipartite entropy
(i.e., the entropy of the reduced density matrix for half of
the system) of the steady states of a single run vs their
average quasienergy, for Δε ¼ 10−3. As discussed more
fully in the accompanying Supplemental Material [37],
this choice of quasienergy window for an L ¼ 9 system
typically contains less than 10 eigenstates, which are spread
fairly evenly in quasienergy. Even for this small amount
of mixing of eigenstates, representing a reasonable set of
initial conditions, the states begin to separate into two
distinct entropy bands, unlike the seemingly random
entropies of eigenstates. The majority of states exist in a
band near maximal entropy, consistent with an infinite
temperature state. Meanwhile, a much smaller set of states
exhibit significantly lower entanglement. Indeed, as we
show in the Supplemental Material [37], the scar states
exhibit a subthermal von Neumann entropy consistent with
an area law.
To confirm the generality of this picture for typical initial

conditions, we next consider a randomly chosen basis jϕmi
of initial conditions. In other words, we let the energy
window Δε of superpositions tend to 2π=3. The bipartite

entropy of the steady states vs their average quasienergy is
plotted in Fig. 2(c). As can be seen, a randomly chosen
basis of initial conditions leads to two fairly sharp entropy
bands, with the lower band having a clearly subthermal
entropy. The existence of these low-entropy states provides
a counterexample to the conventional wisdom that a
Floquet system should always heat up to infinite temper-
ature unless its spectrum is completely localized. However,
a Hamiltonian system featuring scar eigenstates will
generically fully thermalize under driving.
Importantly, the number of low-entanglement states

grows only algebraically in system size, as we discuss
below, while the number of thermal states grows exponen-
tially. In light of these facts, we refer to these steady states
as dynamical scar states, in analogy with the ETH-violating
scar eigenstates of certain Hamiltonian systems. The exist-
ence of these scar steady states under Floquet evolution
is independent of the details of the gates making up the
time evolution operator, which are chosen randomly.
Furthermore, the dynamical scar states are present even
for a translation-invariant Floquet random circuit, indicating
that scarring does not arise from conventional disorder-
driven localization. This is consistent with the behavior of
fully random fractonic circuits, which were similarly argued
to exhibit localization in the absence of disorder [32].
Characterization of scar states.—To build intuition for

the nature of the dynamical scar states, it is useful to study
the profile of the Sz expectation value. In Fig. 3(b), we
display the hSzi profile for a typical scar state and typical
thermal state for L ¼ 9. Other scar and thermal states
feature the same behavior. The thermal state has an almost
flat distribution, as expected. In contrast, the scar states
each feature a single localized fracton peak. Even for initial
conditions with multiple fractons scattered throughout the
system, the steady-state configuration features only a single
peak, corresponding to the fractons clustering at their
mutual center of mass. For each ðQ;PÞ sector, there is
only a single scar steady state [Fig. 3(a)] with the fractons
maximally clustered. The only exception is the Q ¼ 0
sector, which does not exhibit any localized states. This
behavior, with no known analogue in Hamiltonian scars, is

FIG. 2. Bipartite entropy S of (a) pure eigenstates, exhibiting Hilbert space fragmentation [34,35], (b) steady states of initial conditions
slightly different from eigenstates (Δε ¼ 10−3), and (c) steady states of random initial conditions.
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consistent with the fracton agglomeration observed in the
steady states of fractonic random circuits [32].
Remarkably, the scar states have high overlap with

“minimal” product density matrices corresponding to
different values of charge and dipole moment. The minimal
product density matrix with chargeQ and dipole moment P
is a product of identity operators on almost every site,
except for ðI þ SzÞ operators on exactly Q sites chosen to
correspond to dipole moment P. For example, for Q ¼ 1,
the corresponding minimal product density matrices takes
the form ρmin ¼ � � � I ⊗ I ⊗ ðI þ SzÞ ⊗ I ⊗ I � � �, where
the lone ðI þ SzÞ operator is on site P (with respect to the
chosen origin). For higher charges, the ðI þ SzÞ operators
are placed as close together as possible consistent with the
given dipole moment, to capture the effects of fracton
agglomeration. We now evaluate the quantum fidelity
between a scar steady state, ρscar, and the minimal product
density matrix with the same Q and P expectation values:

Fðρmin; ρscarÞ ¼
�
Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρmin
p

ρscar
ffiffiffiffiffiffiffiffi
ρmin

pq i�
2 ð4Þ

which serves as a measure of closeness of the two quantum
states. The results are shown in Fig. 3(c) for states in the
Q ¼ 1 sector (L ¼ 9). We find high agreement between the

scar states and minimal product density matrices. These
minimal product density matrices were precisely the initial
conditions which led to fracton localization under random
unitary circuit dynamics [32]. We therefore identify scars
with the localized steady states observed in Ref. [32], and
conclude that scarring originates from the same physical
mechanism. Our present investigation thus suggests that
quantum dynamics with fractonic constraints is ergodic
almost everywhere in Hilbert space, as characterized by
near-maximal entropy. However, there is a special scar
subregion of Hilbert space that displays nonergodic behav-
ior under driving. Furthermore, being close to product
states, the scar states are of direct experimental importance.
Enumerating the scar states.—As seen earlier, for typical

initial conditions, there is precisely one scar steady state per
sector (Q, P), corresponding to the minimal product density
matrix within that sector. Therefore, to determine the
number of scar steady states for a given basis, we only
need to count the distinct number of ðQ;PÞ sectors. We first
determine the number of distinct dipole sectors for a given
charge Q. For a system of size L, given a charge Q, the
value of the dipole moment can go from QðQ − 1Þ=2 to
QL −QðQþ 1Þ=2. This gives QL −Q2 þ 1 distinct sec-
tors per charge Q. Note that this formula is not operative
for the Q ¼ 0 sector, where there is no localization.

FIG. 3. (a) For typical initial conditions, there is one scar state per sector, as diagnosed by entropy (shown for Q ¼ 1, P ¼ 1). (b) A
typical scar state (red) features a single fracton peak, while a typical thermal state (blue) has a mostly flat hSzi profile. (c) Scar states have
high fidelity with minimal product density matrices (L ¼ 9).

FIG. 4. (a) Frequency (normalized by total number of scar states) of the number of dipole sectors per Sz eigenvalue Q. The quadratic
best fit (dashed line) agrees well with the analytic prediction (L ¼ 15). (b) The number of scar states scale as La, where a ≈ 3 to high
accuracy, while the total number of states scales exponentially, i.e., ∼3L.
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This formula agrees well with what we observe in our
simulations [Fig. 4(a)].
Now we determine the number of scar steady states

N total
scar ðLÞ in the entire spectrum for a system of size L, and

test our analytic prediction against numerics. To do this, we
evaluate the following sum:

N total
scar ðLÞ ¼ 2

XL
Q¼1

ðQL −Q2 þ 1Þ: ð5Þ

This sum givesN total
scar ðLÞ ¼ L3=3þ 5L=3, i.e., N total

scar ðLÞ∼
L3. We verify this scaling numerically in Fig. 4(b). The
good agreement between the counting of minimal product
density matrices and the observed number of scar states
gives us additional confidence in our interpretation. Note
that the scar states constitute only a tiny fraction of the
total Hilbert space, which has 3L states, most of which are
thermal.
Discussion and conclusions.—In this work, we have

shown how the conservation laws associated with fracton
systems, such as conservation of charge and dipole
moment, lead to athermal behavior in the steady states
of a Floquet system. Specifically, for a typical basis of
initial conditions, athermality is manifested in a small set of
states which remain localized under the driving, while
the majority of initial conditions heat up to an infinite-
temperature steady state. We refer to this new type of
athermal state as a dynamical scar state, in analogy with the
scar eigenstates observed in Hamiltonian systems. These
scar states represent a vanishingly small fraction of the total
Hilbert space in the thermodynamic limit, but are never-
theless experimentally relevant due to their high overlap
with easily prepared product states. These dynamical scars
possess several exotic new features, such as robustness
against driving, insensitivity to microscopic details, and the
presence of agglomerated fracton peaks. This novel mani-
festation of the scar phenomenon represents a fundamen-
tally new type of nonergodic behavior, which we hope may
yield more general insights into the physics of quantum
many-body scars.
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