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Consequences of Lattice Mismatch for Phase Equilibrium in Heterostructured Solids
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Lattice mismatch can substantially impact the spatial organization of heterogeneous materials. We
examine a simple model for lattice-mismatched solids over a broad range of temperature and composition,
revealing both uniform and spatially modulated phases. Scenarios for coexistence among them are
unconventional due to the extensive mechanical cost of segregation. Together with an adapted Maxwell
construction for elastic phase separation, mean field theory predicts a phase diagram that captures key low-

temperature features of Monte Carlo simulations.
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Lattice mismatch—the difference in preferred bond
length between adjoining regions of a heterogeneous
solid—is a natural consequence of mixing diverse compo-
nents to build complex materials. It is well recognized that
juxtaposing domains with different lattice spacings intro-
duces local strain, significantly impacting material proper-
ties such as electronic structure [1-3] and the propensity to
form dislocations [4,5]. The resulting elastic energy can
also significantly bias the spatial arrangement of composi-
tional defects and interfaces. How these biases influence
the thermodynamic stability of mixed phases, however,
has not been thoroughly characterized. Here, we examine
the phase behavior of a microscopic model for such
systems, motivated by intriguing heterostructures adopted
by CdS/Ag,S nanocrystals [6] in the course of cation
exchange reactions [7-10]. Their alternating stripes of
Cd-rich and Ag-rich domains have been attributed to a
lattice mismatch between the CdS and Ag,S domains [11],
but an understanding of how they form, and whether they
are thermodynamically stable, has been lacking.

Our model and analysis draw from those introduced
by Fratzl and Penrose [12,13], who represented a two-
component solid by atoms on a flexible square lattice with
bond length preferences that depend on local composition.
By integrating out mechanical fluctuations, they obtained an
approximate effective Hamiltonian for the composition field,
whose atomic identities interact in a pairwise and anisotropic
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fashion. For the special case of a 1:1 mixture
of the two species, they used mean field theory (MFT) to
predict a second-order phase transition between a high-
temperature disordered phase and a low-temperature ordered
phase characterized by stripes of alternating composition.

This Letter surveys the composition-temperature phase
diagram of a similar model much more broadly, revealing an
unanticipated richness with interesting implications for nano-
scale transformations. Monte Carlo (MC) simulations con-
firm the predicted appearance of modulated-order phases
with spontaneously broken symmetry. They further point to
unusual scenarios of phase separation, with well-defined
interfaces but a nonconvex free energy. This behavior can be
understood as a consequence of elastic energies for phase
separation that scale extensively with system size. For this
situation we devise a procedure, akin to the conventional
Maxwell construction, to determine the boundaries of coex-
istence regions given equations of state for the corresponding
bulk phases. Although the high temperature phase behavioris
dominated by fluctuations on the triangular lattice, a straight-
forward mean field theory describes the required bulk
properties quite faithfully at low temperature. We combine
these approaches to predict a phase diagram that accounts for
the full set of structures observed in our MC simulations,
including those with system-spanning interfaces.

We consider a model in which N atoms are situated
near the sites of a completely occupied two-dimensional
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triangular lattice, with periodic boundary conditions in both
Cartesian directions. The atom at site R has two possible
types, indicated as og = +1 (type A) and o = —1 (type
B). These atom types are distinguished by their size, so
that nearest neighbor atoms at sites R and R + aa prefer a
bond distance [ dictated by their identities,

lAAv for OR = OR+4aa — 1,

for og # OR 4 aa, (1)

lBB! for OR = ORtax — —1,

[(6R,ORai) = { lap

where a is the lattice constant and @& is a unit bond
vector. We take lzp < I44 and adopt the simple mixing
rule g = (Ius + Ipg)/2. The lattice mismatch A = (144 —
Igg)/2 will serve as our basic unit of length.

Both the atoms’ identities and their displacements
(ug) away from ideal lattice positions fluctuate according
to a Boltzmann distribution P({ug}, {og}) « e?", where
T = (kgB)~! is temperature and H({ug},{or}) is the
energy of a given configuration. The net displacement
> RUur = 0 and the net fraction of A atoms ¢ =
(2N)™!' S g(og + 1) are both implicitly held fixed.
Fluctuations in the lattice constant a (at zero external
pressure), however, are included in the ensemble we
consider; for large systems and small lattice mismatch,
this freedom primarily allows the macroscopic geometry to
adapt to the imposed composition, a ~ I,z + A(2c — 1) +
O(N~'/2). The free energy F(c) for this ensemble encodes
the model’s response to changing proportions of atom
types, and in particular its phase transitions.

Deviations of bond distances away from their locally
preferred lengths incur energy that grows quadratically,

K .
H= ZZH““ +uR —Ug 4l = l(oR. or 1)’ (2)

R.a

where K is a positive constant that sets the natural energy
scale € = KA?/8. All energies and lengths will henceforth
be expressed in units of € and A, respectively. The ground
states of Eq. (2) clearly occur in the absence of hetero-
geneity, i.e., ¢ = 0 or ¢ = 1. At intermediate composition,
fixed connectivity prevents the collection of bonds from
simultaneously attaining their preferred lengths. We have
explored the resulting compositional correlations analyti-
cally using small-mismatch and mean-field approxima-
tions, and also numerically using MC simulations.

At a high temperature, equilibrium states of this model
are macroscopically uniform but exhibit suggestive micro-
scopic correlations. A few such disordered configurations,
selected randomly from MC simulations, are shown in the
top row of Fig. 1(a). For nearly pure mixtures at modest T
(~1.4,) defects cluster in space, but not compactly. Motifs
of microscopically alternating composition are even more
evident at intermediate net composition, where typical
equilibrium states resemble interpenetrating networks
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FIG. 1. Monte Carlo (MC) simulation results for the elastic
model in Eq. (2). (a) Survey of configurations exemplifying
the disordered, unstructured (U; and U,), and superlattice (S; and
S,) phases. Blue and red spheres represent A and B atoms,
respectively. (b) Free energy per particle F(c)/N as a function of
composition ¢ at T = 0.24. Circles numbered 1 to 7 refer to the
corresponding configurations in (a). Results are shown in black
for MC sampling, in pink for the mean field theory (MFT)
of Eq. (5), and in blue for the application of the quadratic
construction [QC, Eq. (7)] to mean-field thermodynamics. Lower
panel shows the difference between MFT and MC results (pink),
and the difference between MFT + QC and MC (blue).

of A and B atoms. At low temperatures these structural
tendencies produce four phases. The “superlattice” phases
S, and S, feature periodic modulation of atom types with
wavelengths on the order of a single lattice spacing. In the
vein of previous studies of modulated order [14,15] we
characterize these phases by their average composition
on three distinct sublattices. In §; two sublattices are
enriched in atom type A, while the third is enriched in
type B. The roles of A and B are reversed in S,. The ideal
forms of these phases, where the net composition per site

2¢,—1=(3/N) Zg) og is =1 on each sublattice y, occur
at ¢ = 1/3 and ¢ = 2/3. In the “unstructured” phases U,
and U,, whose zero-temperature forms are compositionally
pure, the average composition is independent of the
sublattice. Previous work anticipated the appearance of
modulated order phases like S; and S, [12,13], but not their
competition with unstructured phases.
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The emergence of superlattice phases as temperature
decreases at intermediate composition involves a breaking
of symmetry between A- and B-rich states. This symmetry
is suggested by the form of Eq. (2), but not precisely
implied. Despite its Hookean form, 7 is an anharmonic
function of atomic displacements, with nonlinearities of
order A/a that favor one atom type (B) for all ¢ #0, 1.
Symmetry with respect to a global transformation of the
composition {og} — {—or} is thus not guaranteed.
Nevertheless, MC simulations suggest a symmetry of
thermodynamic quantities about ¢ very near 1/2 even
for the substantial lattice mismatch A/a = 0.15, indicating
that nonlinearities in 7 are intrinsically weak in effect [16].

MC sampling further reveals states of coexistence
among these four phases, as depicted in the bottom row
of Fig. 1(a). Specifically, S; and S, coexist at low temper-
atures over a range of compositions centered near ¢ = 1/2.
Coexistence between S| and U, and between S, and U,,
are also observed. But under no conditions do simulations
exhibit coexistence between U, and U,.

The usual quantitative signature of phase separation in d
spatial dimensions is a subextensive nonconvexity in the
corresponding free energy, i.e., a barrier of O(N~(4~1)/4) in
F(c)/N as a function of ¢ that approaches the convex
envelope in the thermodynamic limit. The free energies
Fye(c) we have determined from simulation (using meth-
ods of umbrella sampling and histogram reweighting
[17-19]) do not follow this expectation. Specifically, plots
of Fyc(c)/N in Fig. 1(b) show nonconvex regions that
persist as N becomes large [20]. We will argue that this
behavior is generic to the coexistence of geometrically
mismatched solids with a fixed macroscopic shape, and that
the resulting negative curvature of F(c) is simply related to
their elastic properties.

For atom types that differ only slightly in size, A/a < 1,
the energy H is approximately quadratic in the displace-
ment field ug. Mechanical fluctuations in this Gaussian
limit can be integrated out exactly [12,20], yielding
marginal statistics of the composition field that corresponds
to a Boltzmann distribution with effective energy

1 - 1
Heff({GR}):ﬁZVq‘ng:E Z orVr-r'or. (3)
q

R.R'#R

where fq = > g fre "R denotes the Fourier transform of
a generic function fg. The effective interaction potential
Vg for compositional fluctuations has Fourier components
that depend smoothly on the wave vector q at all finite
wavelengths:

2
4(2 cos &% cos a4 cos g.a—3)

Y 2 2
Vq q.a \/§q.a ’
X - - - )
(cos gya —2)(4cos &% cos —5= — 3) + cos \/§q)a
(4)

where x and y indicate Cartesian components. \7q vanishes
abruptly at q = 0, with important implications for open
ensembles in which ¢ can vary; here, at fixed net compo-
sition, the value of V is irrelevant.

Figure 2 shows the effective compositional potential in
both real- and reciprocal-space representations. Like the
result of Ref. [12] for more complicated mechanical
coupling on a square lattice, Vq has local minima near
the boundary of the first Brillouin zone. Periodic variations
in composition are thus the least costly at microscopic
wavelengths and along particular lattice directions, echoing
the stability of superlattice phases observed in simulations.
The modulated microstructure of these phases is suggested
even more strongly by the dependence of Vg on atom
separation, which we obtain by numerical inversion of the
Fourier transform. Elastic interactions clearly disfavor the
placement of defects on neighboring lattice sites [20].

The effective Hamiltonian H,g ({og }) for compositional
fluctuations can serve as the basis for a simple MFT.
Following standard treatments [15,33], we consider a
reference system of noninteracting spins in an external
field that may differ among the three sublattices. Variational
optimization of this reference system yields a set of
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FIG. 2. Effective pair potential V for the composition field in
the small-mismatch approximation of Eq. (3). (a) Reciprocal
space representation V,, plotted in the first Brillouin zone. The
black dot in the center indicates the discontinuity at g =0,
where Vo = 0. (b): Effective interaction between an A (or B)
atom at the origin (marked by the outlined hexagon) and
another A (or B) atom at R. Mixed interactions between A and
B have opposite signs.
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self-consistent equations for the average compositions ¢
on sublattices y = 1, 2, 3,

14

3
2¢,— 1= tanh/}(y —2> (2¢5- 1)Jy,;>, (5)

o=1

where p is a Lagrange multiplier enforcing the constraint
c= Zycy/3, and

3
— ) ()
Jys NE R E R'#R VR R (6)

describes the net coupling between sublattices y and 6.

We solve Eq. (5) numerically to determine an estimate
Fyrr(c) for the free energy. This mean-field approximation
successfully captures some of the general features of our
simulation results, particularly at low temperature. For the
example plotted in Fig. 1(b), discrepancies are small over
the entire range of ¢, and significant only where simulations
show two phases coexisting in similar proportions. Since
the states considered in MFT are macroscopically uniform
by construction, a failure to describe phase equilibrium is
expected. From such a theory of uniform states, assessing
the thermodynamics of coexistence would typically pro-
ceed by Maxwell construction, removing nonconvex
regions of Fygr(c) that usually signal instability to the
formation of interfaces. For a case in which the true free
energy is nonconvex, a different procedure is clearly
needed. As has been noted previously in the context of
capillary wave suppression in elastic solids [34], here we
must specifically acknowledge an extensive thermody-
namic penalty to accommodate domains with differing
lattice constants in a rectangular macroscopic geometry.

Linear elasticity theory associates an energy E =
Y(L — Ly)* with deforming a solid from its natural length
Ly to a length L, where Y is Young’s modulus [35,36].
From this rule we can estimate the cost of phase coexist-
ence in a lattice-mismatched solid. Consider two phases
with compositions ¢; and c¢,, whose macroscopically
uniform realizations have free energies per particle f(c;)
and f(c,). In the Supplemental Material [20] we estimate
the free energy of a solid in which domains of these phases
coexist at a net composition c:

ACl

Fcoex(clv €25 C)
ACZ - AC]

Af —YAPRAc, Ac,.
N v C1AC

(7)

Here, Ac;=c;—c, Af = f(ca) = f(c1), Al=1(cy) -
I(c;), and [(c;) is the energy-minimizing unit cell length
for composition c;.

Absent lattice mismatch (Al = 0), minimizing Eq. (7)
with respect to ¢; and ¢, (at fixed ¢) corresponds to the
conventional double-tangent construction. For Al # 0,

= fler) -

coexistence instead entails a free energy that connects
points [c}, f(c7)] and [}, f(c3)] in the ¢ — f plane with a
parabola of curvature k .y, = —YAI’>. We term this pro-
cedure the “quadratic construction” (QC) [20].

Applying the QC to our MFT estimate Fyr(c), corre-
spondence with MC results can be greatly improved. In the
case of Fig. 1(b), mean-field predictions for F(c) deviate
from simulations by less than 1%, comparable to random
sampling error. This excellent agreement emphasizes a
predominance of macroscopically heterogeneous states in
the temperature range 7 < 0.4, despite the nonconvexity of
F(c). We attribute this agreement to the appreciable spatial
range of Vg, which includes substantial coupling between
sites separated by several lattice spacings. The low-q form
of \7q, which varies quadratically with ¢ to lowest order,
suggests an eventual failure of MFT near criticality [20,37].
Quantitative agreement indeed deteriorates with increasing
temperature, and above T = 0.46 the fluctuations neglected
by MFT influence phase behavior even qualitatively. The
phase diagram for our elastic model, as determined from
MC simulations [20] and plotted in Fig. 3(b), is equivalent
in form to a spin model on the same lattice with couplings
that resemble Vi at short range [14]. In contrast to
predictions of MFT [see Fig. 3(a)] (i) the loss of superlattice
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FIG. 3. Phase diagram for our elastic model in the plane of
temperature and composition. (a) Mean-field prediction resulting
from the quadratic construction of Eq. (7). Black circle indicates a
critical point at 7 = 1.3; elsewhere, lines indicate first-order
transitions. Orange lines separate the disordered phase from
superlattice phases S; or S,. Blue lines bound coexistence
regions, which are shaded in light blue. (b) Numerically exact
results from Monte Carlo sampling. In this case, the disordered-
to-superlattice transitions (orange lines) are continuous. A line
of Kosterlitz-Thouless critical points between T'°%" ~ (.46 and
TP % 0.56 is shown in red.
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order upon heating is continuous, with critical properties
belonging to the three-state Potts model universality
class, and (ii) in the temperature range 7 = 0.46 to
T ~0.56, phases S; and S, are separated by a line of
Kosterlitz-Thouless critical points. Away from these
exotic features, first-order transitions are well described
by Egs. (5) and (7). The absence of a first-order transition
between unstructured phases U; and U, is also captured
by MFT and the QC, which manifests an energetic
instability for this scenario [20].

Our results demonstrate that lattice mismatch can
generate more nuanced thermodynamic behaviors than
was previously appreciated. They also indicate a central
importance of lattice geometry and boundary conditions.
The modulated order of phases S; and S, owes its
stability to the fixed macroscopic shape implied by
periodic boundary conditions. Such a constraint on
boundary shape could arise in real systems from strong
interactions that bind a nanocrystal to a substrate, a
notion consistent with the observation of stable Cu
superlattices within two-dimensional Bi,Se; nanocrys-
tals [38]. It could also be imposed by core-shell inter-
actions in hetero-nanostructures, a possibility which we
have explored with MC simulations [20]. Core-shell
arrangements, moreover, are natural intermediates in the
course of exchange reactions that proceed most rapidly
at surface sites [39].

The precise form of the phase diagram in Fig. 3(b) is
likely specific to the dimensionality and lattice symmetry
of the elastic model we have studied. Several of its
interesting features, however, we expect to be general
for heterostructured solids under appropriate boundary
conditions. A tendency for modulated order, for example,
is evident in three-dimensional systems explored previ-
ously [40] and in exploratory simulations described in the
Supplemental Material [20]. Thermodynamic potentials
with indefinite convexity, and their implications for phase
coexistence, are similarly anticipated as generic conse-
quences of the elastic forces attending lattice mismatch.
Testing these predictions in the laboratory may be the most
straightforward for materials that can be manipulated more
readily than the internal structure of nanocrystals, for
instance assemblies of DNA-coated nanoparticles [41] or
spin-crossover compounds [42-47], where elasticity is
known to play a significant role.
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