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A wide class of physical systems exhibit scale invariance. While the statistical properties of such
behavior can often be investigated by theoretical and experimental means, its dynamics are notoriously
hard to parse. We investigate scale-invariant dynamics through an unstable periodic orbit. This orbit
coexists with turbulence of an incompressible fluid and yields a significant Kolmogorov energy spectrum.
We identify events of intense energy transfer across spatial scales and relate them to vortical dynamics.
The results support a recently proposed mechanism for turbulent energy transfer.
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Introduction.—The distribution of energy over spatial
scales is central to the study of spatially extended physical
systems. Power-law distributions are indicative of scale-
invariant dynamics and are observed in a variety of
phenomena, ranging from magnetic fluctuations in the
solar wind [1] to mechanical vibrations of thunder sheets
[2] and tangled vortex lines in superfluids [3]. In these
systems, there exists a range of spatial scales in which the
dynamics neither depend on the mechanism of energy input
nor on the way it is dissipated. Ensemble averages of
observables can often be predicted on the basis of dimen-
sional analysis and compared to experimental data—indeed
each of the papers cited above contain power-law distri-
butions distilled from measurements. In contrast, the
dynamical processes that conspire to produce this average
behavior are ill understood. In this Letter, we study a
minimal model for power-law behavior in a spatially
extended system, namely large eddy simulation (LES) of
homogeneous, isotropic turbulence (HIT), and show that its
dynamics can be studied using a simple invariant solution
as a proxy. To the best of our knowledge, this is the first
investigation of scale-invariant dynamics using a simple
invariant solution, and it presents a promising step forward
for the study of systems with a wide range of active spatial
scales.
Arguably the most famous example of a power-law

energy spectrum is Kolmogorov’s “law of −5=3” for HIT
[4]. It was derived for the inertial range of spatial scales,
which are smaller than the scales that characterize inter-
action with material boundaries or a body force, but larger

than that on which viscous damping is dominant, under the
assumption that the statistical properties of the flow are
determined entirely by the rate of energy dissipation.
Although corrections to the exponent of −5=3 arise due
to intermittent energy dissipation events [5], it was shown
to fit experimental and numerical data well [6–8]. The
statistics of inertial range turbulence are thus well studied,
but the nature of turbulent dynamics remains one of the
great open questions of physics.
The beginning of an answer is that turbulence is not

featureless but populated by structures, like vortex tubes
and sheets, which stay coherent over long enough times to
consider them “building blocks.” Such structures are
distributed across scales and their interaction is thought
to be essential to the processes of the energy cascade. One
picture consistent with a power-law spectrum, often attrib-
uted to Richardson [9], is that these structures “break
down” in a self-similar fashion, thereby transferring energy
to progressively smaller scales. Various mechanisms have
been proposed for such break-down, for instance the
ejection of thin, spiral vortex filaments from a large-scale
vortex tube [10], the generation of counter-rotating vortex
pairs wrapped around such a structure [11] and, more
recently, the iterated flattening and roll-up of vortex
filaments [12]. What these mechanisms have in common,
is that the transport of a given amount of energy across the
inertial range takes a finite time. This time delay explains
the quasicyclic behavior of spatial mean quantities, like the
total energy and its rate of dissipation, observed both in
experiments and in simulations (e.g., [13–15]). In the first
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phase of the cycle, large-scale space structures grow under
the influence of the forcing. In the next phase, these
structures break down, thus supporting the energy cascade.
Finally, the large scales of the flow enter a quiescent state.
This process repeats with a period much greater than the
large-eddy turnover time. In various contexts the question
has been posed whether this regeneration cycle of turbu-
lence could be represented by a time-periodic solution to
the governing equations [12,16,17]. We answer this ques-
tion to the affirmative by presenting an unstable periodic
orbit (UPO) that exhibits the expected regenerative dynam-
ics as well as the statistics of developed turbulence.
LES of box turbulence.—The width of the inertial range

in HIT is expected to grow as Re3=4λ , where Reλ is Taylor’s
microscale Reynolds number. At the minimal value of Reλ
for which a significant Kolmogorov spectrum is observed,
around Reλ ¼ 100, a faithful direct numerical simulation
(DNS) requires several millions of degrees of freedom
(DOF), which exceeds the limits of our current numerical
methods for computing UPOs. We mitigate this problem
by modeling the effect of the small-scale motion by an
effective eddy viscosity. The resulting equations are

∂tuþ u · ∇uþ∇
�
p
ρ
þ 1

3
Π
�
− 2∇ðνTSÞ ¼ γf ; ð1Þ

∇ · u ¼ 0; ð2Þ

where u, p, and S are the grid-scale velocity, pressure,
and rate-of-strain tensor, respectively, and Π contains the
normal subgrid stress. The density, ρ, the forcing, f , and its
amplitude, γ, are constant. Using the closure proposed by
Smagorinsky [18], the eddy viscosity is given by

νT ¼ ðCSΔÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
; ð3Þ

where CS is the Smagorinsky parameter, Δ is the grid
spacing, and summation over repeated indices is implied.
While energy is removed from the system in an artificial
way, this closure has been shown to faithfully reproduce
inertial range dynamics and statistics, including spatial
intermittency, in the presence of periodic boundary
conditions [19–21]. The force is f ¼ ( − sinðxÞ cosðyÞ;
cosðxÞ sinðyÞ; 0)T , as used by Yasuda et al. [16], on a 2π ×
2π × 2π periodic cube. The governing equations inherit the
symmetries of this force so they are equivariant under
translations in the z direction. Results below are scaled with
the integral length scale, L ¼ 3πhR∞

0 k−1Eðk; tÞdk=ð4KÞit,
the root-mean-squared velocity, given by U2 ¼ 2hKit=3,
and the large-eddy turnover time, T ¼ L=U. Here,
K ¼ hu2is=2, Eðk; tÞ is energy spectrum and h:is;t stands
for the average in space (s), time (t), or both (st). These
scales are commonly used in the study of HITand we adopt
them here for compatibility, even though the forcing is
anisotropic. The local rate of energy transfer to the subgrid

scales is denoted by ϵ ¼ 2νTSijSij. Simulations are done
with a pseudospectral code on 643 grid points, yielding a
dynamical system with 230 243 DOF.
Embedded time-periodic motion.—The only parameter

in this LES is CS. When CS ≈ 1, the fluid motion is
temporally chaotic but has little spatial complexity because
of the strong damping [22]. As we decrease CS, the energy
input and LES filter length scales become increasingly
separated, allowing turbulence to develop. In more turbu-
lent flow, the computation of time-periodic motion is more
difficult. We employed the Newton-Krylov-hook algorithm
[23] and its convergence hinges on a large portion of the
DOF being strongly damped. Thus, the conditioning of the
method deteriorates as CS decreases. We selected an
approximately time-periodic segment of simulation data
in the strongly damped regime and gradually decreased CS.
At CS ¼ 0.55, for a ratio of the integral length scale to the
LES filter length of L=ðCSΔÞ ≈ 24, it took a few thousand
Newton-hook iterations, each requiring a few hundred
Krylov iterations, to obtain a periodic orbit that reproduces
turbulent statistics and dynamics. The final residual is
3.5 × 10−5, as measured by the energy of the difference
between the final and the shifted initial state, normalized by
the amplitude of the fluctuation of the energy along the
UPO. The period of this UPO is about 9T and the shift in
the vertical is 0.85Δ in one period. It has 210� 2 unstable
Floquet multipliers, the uncertainty arising from the finite
residual of the UPO. The largest multiplier in magnitude
corresponds to a decorrelation time of 1.6T. A projection of
the UPO ontoK and hϵis is shown in Fig. 1. The white dots,
drawn at regular time intervals, show that the state of the
UPO is close to the centroid of the PDF of turbulence for
about one third of its period. The average energy dis-
sipation rate along the UPO is hϵist ¼ 0.508U3=L, within

FIG. 1. Projection of the UPO onto K and hϵis, normalized by
large scales. In gray scale the probability density function (PDF)
of turbulent LES is shown. The structure of the flow at instants
labeled t0 and t3 are shown in Fig. 3. The white dots have been
drawn at regular time intervals 9T=7.
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0.5% from the average in LES turbulence and in good
agreement with the range of values reported in the
literature [24,25].
The time-averaged spectrum of the UPO, shown in

Fig. 2, has a significant inertial range and agrees well
with that of LES turbulence. Also shown is the spectrum of
a DNS with the same forcing beyond the mixing transition,
for which Reλ ¼ 111 and hϵist ¼ 0.39U3=L, showing good
agreement in the inertial range. We have included in Fig. 2
the anisotropy quantifier QðkÞ ¼ AijAij=2, where Aij ¼
hEijðk; tÞit=hEðk; tÞit − δij=3 is the spectral anisotropy
tensor and Eijðk; tÞ is the cospectrum [26]. Anisotropy is
high in the first wave number, but decreases for higher
wave numbers to values typical of DNS with stochastic,
approximately isotropic forcing, Q≲ 0.01 [26], and below
values typical of experimental realizations, Q≲ 0.15
(e.g., [27]). The flow is fully 3D in the inertial scales
and complies well with the local isotropy hypothesis of the
Kolmogorov theory.
The structure of the time-periodic energy cascade.—We

confirm the presence of an energy cascade in the UPO by
analyzing the dynamics of the flow at different scales. We
filter the velocity field and calculate energy fluxes in
physical space, sðx; t; lÞ ¼ τijS̄ij, where x is the spatial
coordinate of the flow, ·̄ denotes filtering at scale l with a
Gaussian filter in Fourier space, GðkÞ ¼ expð−k2l2=24Þ
[21], and τij ¼ ūiūj − uiuj is the subfilter stress tensor.

Negative sðx; tÞ indicates that energy is flowing towards the
small scales. In addition, we consider the enstrophy, ω2,
and the enstrophy of the filtered field, ω̄2, where ω ¼
∇ × u is the vorticity vector.
Visual inspection of these quantities reveals at least two

generations of vortices at the integral scale and the subgrid
filter scale, shown at t ¼ t0 and t3 in Fig. 3. The first takes
the form of four large counter-rotating vortex columns.
Although generated and constrained by the forcing, these
column vortices change considerably in intensity, wind and
meander, interact with the next generation of vortices, and
display complex, three-dimensional dynamics in time. The
next generation of vortices, visualized with the isosurfaces
of unfiltered enstrophy, populate the vicinity of the first and
appear mostly perpendicular to these. We hypothesize that
the smaller vortices are stretched in the vicinity of columnar
vortices by the strong magnitude of the rate-of-strain tensor
generated by the latter [28]. Intense energy transfer at the
scale of the large vortices, l ¼ 1.6L, is also located in this
region, suggesting a connection of this mechanism with the
energy cascade. We observe that the vortices at the grid
scale reproduce similar dynamics, creating strong strain in
their vicinity, where the subgrid model acts to remove
energy from the resolved scales, as evidenced by the
isosurfaces of the subgrid energy flux.

FIG. 2. Energy spectrum of the UPO and the anisotropy
indicator Q. For comparison the spectra of turbulent LES and
DNS, the latter with Reλ ¼ 111, have been included, as well as
the theoretically expected Kolmogorov spectrum with Ck ¼ 1.5
(values in the range 1.3–1.7 have been reported [8]). The small-
scale nondimensionalization is given by E ¼ ½hϵisthνTi5st�1=4
and l ¼ ½hνTi3st=hϵist�1=4 for LES and E ¼ ½Dν5�1=4 and
l ¼ ½ν3=D�1=4 for DNS, where D ¼ 2νhSijSijist is the energy
dissipation rate and ν is the kinematic viscosity. Q2D ¼ 1=12
is the anisotropy of a 2D Taylor-Green vortex of the form f .
The left (right) arrow refers to the logarithmic (linear) scale on the
vertical axis.

FIG. 3. Visualization of the spatial structure of the energy
cascade at t ¼ t0 (top) and t3 (bottom). Left: highlighting
the isosurface of intense enstrophy of the filtered field ω̄2 ¼
2.5hω̄2ist (red) and energy transfer sðx; t3; lÞ ¼ 3.0hsðlÞist (cyan)
at l ¼ 1.6L. Right: highlighting the isosurface of enstrophy ω2 ¼
2.5hω2ist (magenta) and subgrid energy flux ϵ ¼ 3.0hϵist (blue).
Animation available online [29].
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We find further evidence for the presence of at least one
full step of the energy cascade in the analysis of the
temporal signals of the energy injection rate, the interscale
energy flux and the subgrid energy transfer, which are
shown in Fig. 4 (top). The peak in the energy injection rate
precedes the peak in subgrid energy transfer and between
the two we observe a peak in energy transfer at an
intermediate scale. This time delay reproduces the cyclic
dynamics observed in HIT [13–15], evidencing the pres-
ence of an inertial gap between the energy-injection scales
and the small scales. From t0 to t1, the large-scale vortex
columns grow under the influence of the external force.
Between t1 and t2 they break down, feeding the cascading
process that leads to strong subgrid dissipation at t3. The
statistics of local energy fluxes in physical space
also resemble that of fully developed turbulence. In
Fig. 4 (bottom) we show the PDF of sðx; t; 0.8LÞ, which
shows wide tails and collapses well onto that of turbulent
LES and the DNS described above. Energy backscatter, a
characteristic feature of the energy cascade [30–32], also
indicates the presence of healthy inertial-range dynamics.
Intermittency, which is captured by the LES model, is
manifest in the statistics of local energy transfer. In Table I

we present the flatness factor of the local energy fluxes at
different scales,F4ðsÞ¼hðs−hsistÞ4ist=hs2−hsi2sti2st. Values
are in the range reported by Cerutti and Meneveau [21] for
fully developed turbulence and increase with decreasing
scale.
Conclusion.—We have presented a UPO in turbulent LES

and have demonstrated that the periodic dynamics bear the
hallmarks of the energy cascade process: a time delay
between the maximum of energy input, the energy transfer
at intermediate scales, and the dissipation; and spatial
intermittency and −5=3 scaling in the energy spectrum.
Direct visualization of the UPO reveals a complex spatio-
temporal structure, where vortical dynamics overlap with
energy transfer events in agreement with the scenario
proposed by Goto et al. [15]. The results reported here
required severalmonths of computing onmodernGPUcards,
due to thepoor conditioning of the linear problems associated
with Newton’s method and the slow convergence of Krylov
subspace iteration. Likely owing to these computational
bottlenecks, results on invariant solutions in LES have only
recently started to appear. To the best of our knowledge, none
concern time-periodic, scale-invariantdynamics.Sasaki et al.
[33] computed UPOs in Couette flow, but did not attain a
large enough separation of scales to observe the scaling laws
typical of wall-bounded turbulence. Inertial range dynamics
were likewise out of the scope of the prequel to the current
work [22]. Sekimoto and Jiménez [34] studied a homo-
geneous shear layerwith periodic boundary conditions. They
computed several traveling wave solutions at significant
scale separation, but these do not exhibit Kolmogorov
scaling, possibly because their dynamics are too restricted.
We expect that significant improvements to the algo-

rithms will be needed in order to compute a large number of
UPOs in systems with a wide range of active length and
timescales. The goal of this computation is to parse scale-
invariant dynamics with periodic orbit theory (POT) [17].
In POT, UPOs are regarded as “templates” of chaotic
dynamics and they are used in an algorithmic way to
compute physically relevant mean quantities. POT has been
successfully applied to spatially extended dynamics [35],
but systems with a wide scale separation in more than one
spatial dimension have so far proven elusive. We hope that
the current work will serve as a proof of principle that
templates of turbulence can be found, as well as the starting
point of an investigation of cascade dynamics based on
tracking vortical structures, Lyapunov vectors, and other
quantities that can readily be computed for UPOs.

FIG. 4. Top: time evolution of the volume-averaged energy
injection rate (EIR) hγf · uis, the volume-averaged energy trans-
fer hsð0.8LÞis, and the volume-averaged subgrid transfer hϵis,
starting from t0 ¼ 0. Signals are normalized by subtracting the
temporal mean and dividing by the standard deviation in time.
Bottom: probability density function of local energy transfer
events sðx; t; 0.8LÞ for the UPO, the LES flow, and the DNS flow
at Reλ ¼ 111.

TABLE I. Flatness factor of local energy transfer sðx; t; lÞ at
different scales. The flatness factor of the local subgrid fluxes
ϵ ¼ 2νTSijSij is F4ðϵÞ ¼ 22.9.

l=L 1.6 1.2 0.8 0.4 0.2

F4ðsÞ 10.7 11.8 13.9 18.4 22.6
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