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We consider a binary bosonic condensate with weak mean-field (MF) residual repulsion, loaded in an
array of nearly one-dimensional traps coupled by transverse hopping. With the MF force balanced by the
effectively one-dimensional attraction, induced in each trap by the Lee-Hung-Yang correction (produced by
quantum fluctuations around the MF state), stable on-site- and intersite-centered semidiscrete quantum
droplets (QDs) emerge in the array, as fundamental ones and self-trapped vortices, with winding numbers,
at least, up to five, in both tightly bound and quasicontinuum forms. The application of a relatively strong
trapping potential leads to squeezing transitions, which increase the number of sites in fundamental QDs
and eventually replace vortex modes by fundamental or dipole ones. The results provide the first realization
of stable semidiscrete vortex QDs, including ones with multiple vorticity.
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Introduction and the model.—Recent works with binary
Bose-Einstein condensates (BECs) have led to a break-
through in studies of quantum matter, predicting and
experimentally realizing ultradilute superfluids, which form
quantum droplets (QDs). They were predicted in the three-
dimensional (3D) setting [1], as well as in its 2D and 1D
reductions [2], on the basis of mean-field (MF) Gross-
Pitaevskii equations (GPEs) with the Lee-Hung-Yang
(LHY) corrections, which account for quantum fluctuations
around MF states [3]. In 3D and 2D geometries, the LHY
terms are repulsive, helping to stabilize a binary condensate
against the collapse driven by the cross attraction between its
components, which slightly exceeds self-repulsion in each
one, the residual attraction being balanced by the LHY
terms. As a result, stable multidimensional solitonlike states
may be created in the form of QDs, which is a problem of
great interest [4], a challenging issue being the stability of
2D and 3D solitons against the collapse. The prediction was
followed by the creation of quasi-2D [5,6] and isotropic 3D
[7,8] QDs in a binary condensate of two different states of
39K atoms. The competition of long-range attractive inter-
actions and LHY repulsion has also made it possible to
create stable QDs in single-component condensates of
dipolar atoms [9–13]. In addition to their significance to
fundamental studies, QDs offer potential applications, such
as the design of matter-wave interferometers [14]. An
essential extension is the recent prediction of stable 3D
[15] and 2D [16] two-component QDs with embedded
vorticity and robust necklace-shaped clusters [17] (vortex
QDs in dipolar condensates were found to be unstable [18]).
The reduction of the MF system with the LHY correc-

tions to the 1D configuration (the condensate loaded in a

cigar-shaped trap subject to strong transverse confinement
[19–22]) changes the setting, making the LHY term attrac-
tive, contrary to its repulsive sign in higher dimensions [2].
Accordingly, the most relevant case is one with the residual
cubic MF repulsion (the intercomponent attraction being
slightly weaker than the repulsion in each component)
competing with a quadratic term representing the LHY-
induced attraction. Self-trapped states in this model dem-
onstrate Gaussian-like and flattop shapes in the case of
relatively small or large numbers of atoms, respectively [23].
The next natural step is the consideration of a tunnel-coupled
pair of 1D waveguides, in which spontaneous symmetry
breaking of QDs was predicted [24] (similar systems,
combining the LHY term and linear mixing between two
components, were introduced too [25,26]).
The availability of optical lattices (OLs) for BEC experi-

ments [27,28] suggests to consider a setting in the form of
an array of 1D traps, coupled by hopping to adjacent ones.
Similar configurations were broadly considered in optics,
in the form of parallel-coupled arrays of fibers and stacks of
planar waveguides, in temporal- and spatial-domain forms,
respectively [29–40]. In the combination with intracore
nonlinearity, they give rise to 2D semidiscrete solitons,
which are continuous objects along the guiding cores and
discrete in the transverse direction [30,31,37,40,41].
In this Letter, we aim to introduce semidiscrete QDs in

the system of transversely coupled 1D traps, filled by the
binary condensate, which features the combination of the
weak MF repulsion and LHY-induced attraction in each
trap. Subjects of special interest are semidiscrete solitary
vortices, which were not considered previously. We pro-
duce stable solutions for both fundamental (zero-vorticity)
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and vortical semidiscrete QDs, with the winding number up
to S ¼ 5. In the 2D continuum form, bright vortex solitons
were produced in various models [15,16,42–57], the main
issue being their stability [58]. While the stabilization of
vortices was theoretically elaborated in diverse forms, it
was demonstrated experimentally only in nonlocal media
[59]. In settings with local nonlinearity, self-trapped vor-
tices were experimentally observed in transient forms
[60,61]. On the other hand, vortex solitons were predicted
in 2D [62,63] and 3D [64] fully discrete media, including
stable 2D modes with S ≥ 2 [65]. Such 2D discrete states
were created in photorefractive lattices [66,67]. The robust-
ness of semidiscrete QDs presented below, and available
techniques for the work with QDs [5–8], suggest that the
creation of the semidiscrete states is a relevant objective for
experiments.
The setting is realized in the form of the system of

linearly coupled GPEs for the semidiscrete wave function
ψ jðz; tÞ (in the basic form, the same for both components of
the binary condensate [1,2]), with longitudinal coordinate z
and the transverse discrete one j. The GPE system includes
the cubic self-repulsion competing with the LHY-induced
quadratic self-attraction. In a scaled form [2,23], it is

i∂tψ j ¼ −ð1=2Þ∂zzψ j − ðC=2Þðψ jþ1 − 2ψ j þ ψ j−1Þ
þ gjψ jj2ψ j − jψ jjψ j þ ðω2=2Þz2ψ j; ð1Þ

where C > 0 is the coupling between adjacent cores, the
strength of the quadratic attraction is normalized to be one,
and g > 0 is the strength of the cubic self-repulsion.
A realistic model should include a trapping potential with
strength ω2 (its action in the discrete direction is negligible,
as the trapping effect of the OL potential, which makes
the setting semidiscrete, is much stronger). Estimates for
physical parameters of the system and predicted semi-
discrete modes are given below.
It is relevant to mention studies of fully discrete 1D and

2D solitons [68,69], which are supported by the competi-
tion of cubic-quintic onsite nonlinearities. Similarly, we
find many branches of zero-vorticity states, of on-site-
centered (OC) and intersite-centered (IC) types, which are
chiefly stable, but tend to disappear with the increase of C,
as the medium is approaching a quasicontinuum (QC)
regime. However, in the present Letter, we address semi-
discrete modes, rather than fully discrete ones, and we
address semidiscrete vortices, with winding numbers
1 ≤ S ≤ 5, which were not considered previously.
The total norm N ¼ P

j

Rþ∞
−∞ jψ jðzÞj2dz is fixed by

choosing its particular value. First, for states with vorticities
S ¼ 0 and 1, the fixed value is NS¼0;1 ¼ 100, which is
appropriate for plotting the results [as shown below, typical
values of the actual (unscaled) number of atoms are ∼104].
For S ≥ 2, it is convenient to fix larger values of N. Two
remaining control parameters are C and g, which will be

varied in the range of 0 ≤ C, g ≤ 1, which is sufficient for
identifying all species of self-trapped states and making
conclusions about their stability. Along with the norm, the
system conserves the energy

E ¼
X

j

Z þ∞

−∞

�

C

�

jψ jj2 −
1

2
ψ�
jðψ jþ1 þ ψ j−1Þ�

þ 1

2
jðψ jÞzj2 þ

g
2
jψ jj4 −

2

3
jψ jj3 þ

ω2

2
jψ jj2

�

dz: ð2Þ

Stationary states with chemical potential μ are looked
for as ψ jðz; tÞ ¼ ϕjðzÞe−iμt, where ϕjðzÞ is a localized wave
function. In the limit ofC ¼ 0, the uncoupled GPE (1) gives
rise to 1D QDs. Particularly, they assume the flattop shape
with a nearly constant density jϕj2 ¼ 4=ð9gÞ, at μ close to
μ0 ¼ 4=9 − 2=ð3 ffiffiffi

g
p Þ, at which the QD’s width diverges

[2,23]. On the other hand, in the limit of g → 0, the QD
takes a well-localized shape, ϕg¼0ðzÞ¼ð3=2Þjμg¼0jsech2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμg¼0j=2
p

zÞ, with μg¼0¼−ð1=3Þð2N2=3Þ1=3.
The anisotropy of 2D QDs in the ðz; jÞ plane is defined as

the ratio of its widths in the z and j directions, ε ¼ ffiffiffiffi
C

p
Lz=Lj,

with Lz ≡ ½Rþ∞
−∞ jϕj¼0ðzÞj4dz�−1ð

Rþ∞
−∞ jϕj¼0ðzÞj2dzÞ2 and

Lj ≡ ½Pj jϕjðz ¼ 0Þj4�−1½Pj jϕjðz ¼ 0Þj2�2. Indeed, in
the continuum limit (C → ∞), ε ¼ 1 implies that the 2D
mode is axially symmetric in the plane of coordinates
ðz; j= ffiffiffiffi

C
p Þ. It is shown below that ε determines a boundary

between tightly bound (TB) and QC semidiscrete states.
To generate stationary modes, Eq. (1) was solved

numerically, using the imaginary-time and squared-
operator [70] methods for finding QDs with S ¼ 0 and
S ≥ 1, respectively. Stability of the stationary states was
then identified through computation of eigenvalues for
small perturbations and by dint of simulations of Eq. (1) in
real time, both approaches producing almost identical
results. The use of the GPE with the LHY term is relevant
for exploring stability of states supported by quantum
fluctuations, as implied by the derivation of the model
[1,2] and confirmed by direct comparison of the predictions
with experimentally observed dynamics [5–7].
Zero-vorticity QDs.—Two kinds of zero-vorticity modes,

viz., OC and IC ones, which occupy, respectively, 2J − 1
and 2J sites, are produced by the numerical solution.
Starting from the anticontinuum limit (C → 0) [71], many
coexisting solutions are found, corresponding to 1 ≤ J ≤ 5
and 1 ≤ J ≤ 4 for the OC and IC configurations, respec-
tively, i.e., with the number of sites from 1 to 9 (see
examples of stable semidiscrete modes with J ¼ 1, 2 in
Fig. 1). The coexisting solution branches are represented
by the respective dependences μðCÞ and εðCÞ, for the
above-mentioned fixed norm NS¼0;1 ¼ 100 and fixed g, in
Figs. 2(a) and 2(b). The comparison of energy (2) for
different modes demonstrates that the ground state (energy
minimum) always corresponds to the largest number of
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sites. For these states, the energy of the intersite coupling is
∼2%–5% of the total energy, and it is 6%–8% for the vortex
states considered below.
The branches originate from μ ¼ μ0 and ε ¼ 0 at C ¼ 0

and terminate at critical values C ¼ CJ [72], which are
denoted in Figs. 2(a) and 2(b) by red stars and black
rhombuses for the OC and IC states, respectively. The
subplot in Fig. 2(a) shows CJ as a function of J,
demonstrating that the multiplicity of coexisting branches
reduces, step by step, with the increase of C. The single
branch survives at C ≥ 0.10, carrying over into the single
fundamental mode with ε ¼ 1 in the 2D continuum, as seen
in Fig. 2(b). With the increase of C, the evolution of the
single surviving state proceeds through the increase of the
number of sites in this state. An example is the transition
from 9 to 11 sites, with an incremental increase of C, as
shown in the inset to Fig. 2(b).

Semidiscrete QDs can be categorized as TB or QC ones,
if their shapes feature strong or weak discreteness, respec-
tively, the boundary between them being determined by
proximity of ε to 1. The transition from ε ≠ 1 to ε ¼ 1 is
illustrated by the inset to Fig. 2(b), whereCB is identified as
the transition point. A boundary between the TB and QC
regimes in the ðg; CÞ plane is displayed in Fig. 2(c). The
decrease of the boundary value CB with the increase of g is
a natural trend, as stronger self-repulsion makes the droplet
broader in the discrete direction, which is the same effect as
produced by stronger coupling.
Analysis of the stability of the semidiscrete QDs with

S ¼ 0 demonstrates that the OC modes are stable in the
entire ðg; CÞ plane, while their IC counterparts are stable
only in a part of the plane [Fig. 3(a)]. The instability of the
latter states at small g, and their stabilization at larger g, is
similar to findings for 1D discrete solitons in the model
with the cubic-quintic nonlinearity [68]. However, a new
feature is an inner lacuna in the stability area. In direct
simulations, unstable IC QDs transform into robust
breathers, which perform shuttle oscillations [Fig. 4(a)].
With the increase of ω [the trap’s strength in Eq. (1)],

QDs found at ω ¼ 0 undergo a “squeezing transition”
at critical values ωc, which transforms them into stable
QDs with two sites added at their edges, as shown in
Figs. 1(a2)–1(d2). For QDs with larger numbers of sites,
viz., 5–8, the respective critical values are ωc ¼ 0.025,
0.038, 0.032, and 0.045 and Lz=Lω ¼ 5.33, 4.94, 4.62, and
4.37. The large values of the length ratio imply robustness
of the QDs against the squeezing.
Vortex modes.—Semidiscrete states with vorticity S

represent a novel species of self-trapped modes, their
stability being a central issue, as suggested by studies of
vortex solitons in continuous models [58]. The present
system gives rise to such states at g ≥ gmin ≈ 0.4. They
seem as quasi-isotropic modes, with ε close to 1. The
systematic numerical analysis identifies stability areas for
OC vortex QDs with S ¼ 1 and 2 ≤ S ≤ 5, which are
displayed in Figs. 3(b) and 3(c), respectively. For S ¼ 1, the
stability area is split in two parts at C ≈ 0.19 [by the dashed
line in Fig. 3(b)], approximately equal to value CB
separating the TB and QC regions at g ¼ 1 in Fig. 2(d).
Vortices with S ≥ 2 were found only at C > 0.19.
There are two different kinds of stable vortices with

S ¼ 1, of the OC and IC types, with pivots located,
respectively, at a lattice site or between two sites. Stable
IC vortices are found only in a small yellow parameter
region in Fig. 3(b) at C < 0.19, where the semidiscrete
states feature a TB structure, and they do not exist with
S ≥ 2 (in fully discrete 2D lattices, it is also difficult to
find stable IC vortex solitons [69]). Stable OC and IC vortex
QDs [points B and C in Fig. 3(a)] are displayed in
Figs. 3(d1) and 3(d2). In the QC region (C > 0.19), stability
areas for OC vortices with 2 ≤ S ≤ 5 are displayed in
Fig. 3(c), being similar to their counterpart with S ¼ 1 in

FIG. 1. Density profiles of coexisting stable OC and IC
semidiscrete QDs with zero vorticity and the number of sites
from 1 to 4 in (a1)–(d1), respectively. Parameters are ω ¼ 0 and
ðg; C;NÞ ¼ ð1; 0.01; 100Þ. (a2)–(d2) QDs produced from those
displayed in (a1)–(d1) by the squeezing transition imposed by
the trap with ω ¼ 0.004, 0.011, 0.015, and 0.021, in Eq. (1)
respectively. The corresponding transition points are ωc ¼ 0.003,
0.010, 0.014, and 0.020, and the ratio of the QD’s longitudinal
size to the trapping length Lω ¼ ω−1=2

c is Lz=Lω ¼ 10.20, 8.11,
6.74, and 5.93.

FIG. 2. (a),(b) Dependences μðCÞ and ffiffiffiffiffiffiffiffiffiffi
εðCÞp

for the OC and
IC (red solid and black dotted lines, respectively) QDs with zero
vorticity, built of 2J − 1 or 2J sites, vs J, at g ¼ 1 and ω ¼ 0. The
dashed line in (a) is μ0ðg ¼ 1Þ ≈ −0.222. These branches exist up
to terminal values of J, viz., Jðon;inÞT ¼ 5 and 4, respectively. The
subplot in (a) shows critical values CJ , at which the respective
branches terminate, vs J. The subplot in (b) displays the switch of
the single eventually surviving on-site-centered mode from J ¼ 5
to 6 with the subsequent increase of C. The green point CB, at
which ε ¼ 1, is the boundary between the QDs with the TB and
QC structure for g ¼ 1. (c) The TB-QC boundary, CBðgÞ.
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Fig. 3(b). The vortex QDs are stable at values of g exceeding
a certain threshold, which gradually increases with S.
With the increase of the trap’s strength ω, the squeezing

transition leads to destabilization ofOCand IC vortices from
Figs. 3(d1) and 3(d2) atωc ¼ 0.005 and 0.001, respectively,
the corresponding size ratios beingLz=Lω ¼ 0.94 and 0.60;
i.e., the vortices are more fragile states than the fundamental
states. With the further increase of ω, the unstable vortices
are replaced by stable fundamental and dipole-mode QDs at
ω0
c ¼ 0.023 and 0.005 [Figs. 3(d3) and 3(d4)], the corre-

sponding length ratios being Lz=Lω ≃ 1.83 and 1.42.
Unstable vortex QDs display different evolution scena-

rios. Close to the stability boundary, they form robust
breathers that keep initial S [Fig. 4(b)]. Far from the
stability boundary, an unstable vortex QD splits in two
fragments [Fig. 4(c)]. Near the TB-QC boundary, unstable
vortices undergo conspicuous deformation, but do not split,
keeping S and featuring chaotic evolution in Fig. 4(d). Its
chaotic character is confirmed, following a known criterion
[73], by computation of the power spectrum of oscillations
of the peak density, in which 28% of the total power
belongs to a continuous component.

Undoing the rescaling used in the derivation of Eq. (1)
[1,2], we conclude that a longitudinal size of the states is
expected to be Lz ∼ 10 μm with ∼104–105 atoms of 39K
[5–8], transverse trap ωtr ∼ 2π × 200 Hz, and the OL
potential with wavelength ∼4 μm and respective recoil
energy 2m−1

atomðπℏ=λÞ2. The coupling constant C may be
adjusted by variation of the OL depth [74]. The critical
strength of the longitudinal trap, which initiates the
squeezing transition, is ∼ωtr for the robust S ¼ 0 states,
while for more fragile vortices it is ∼2π × 20 Hz. Vorticity
may be imparted to the condensate by a helical optical
beam, transversely focused on spot size ∼Lz [75]. The
experimental realization is definitely possible at temper-
atures ≲2.5 μK [6]. Because of three-body losses, the
modes will start to decay at t≳ 50 ms, which allows one to
observe them by means of available techniques [5–7].
Conclusion.—We have introduced a setting for the study

of semidiscrete QDs in the form of the array of 1D guides
coupled by hopping of atoms. Each guide is filled by a
binary condensate, which gives rise to a semidiscrete
system, in the form of the GPE including the repulsive
cubic and attractive quadratic (LHY) terms, with the
longitudinal continuous and transverse discrete coordi-
nates. The systematic analysis reveals many families of
stable 2D semidiscrete QDs, of the on-site- and intersite-
centered (OC and IC) types, which terminate one by one
with the increase of the coupling coefficient. The system’s
parameter space splits into TB and QC parts, with a single
stable family surviving in the latter one. Previously unex-
plored self-trapped modes are semidiscrete vortices. In the
TB region, vortex QDs, of both OC and IC types, are stable
with winding number S ¼ 1, while in the QC region OC
vortices remain stable up to S ¼ 5. The application of the
longitudinal trap leads to squeezing transitions of S ¼ 0

states and, eventually, to transformation of vortices into
fundamental or dipole modes.
A similar setting may be implemented for spatial optical

solitons in stacks of planar waveguides with cubic-quintic
nonlinearity [76]. A challenging extension is to consider a
3D setting with two discrete coordinates.
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Grant No. 11874112, No. 11575063 and No. 11905032,
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FIG. 4. Examples of the evolution of unstable semidiscrete
QDs. (a) The OC QD with S ¼ 0, denoted by point A in
Fig. 3(a), transforms into a breather that performs shuttle motion.
(b)–(d) Vortex QDs with ðg; CÞ ¼ ð0.55; 0.3Þ, (0.65,0.6), and
(0.75,0.18), which are denoted by points D–F in Fig. 3(d).

FIG. 3. (a) The stability area (purple) for IC semidiscrete
QDs with zero vorticity, in the ðC; gÞ parameter plane. Unstable
modes, such as the one corresponding to point A, with ðg; CÞ ¼
ð0.9; 0.15Þ, transform into robust breathers, as shown in Fig. 4(a).
(b) Stability areas for OC and IC vortex QDs with S ¼ 1 (yellow
and red regions, and the yellow-only one, respectively). (a),(b)
The fixed normalization is N ¼ 100. (c) Stability areas for OC
vortices with S ¼ 2 (all colored regions), 3 (orangeþ brownþ
green), 4 (brownþ greenþ blue), and 5 (green þ blueþ
dark gray). For the convenience of plotting, the normalization
for S ¼ 2–5 is fixed as N ¼ 400, 900, 2500, and 4500, respec-
tively. (d1),(d2) Examples of stable on-site- and intersite-centered
vortices, for ðg; CÞ ¼ ð0.48; 0.1Þ and (0.77,0.15), which corre-
spond, respectively, to points B and C in (c). The insets display
the respective phase profiles. (d3),(d4) Fundamental and dipole-
mode QDs, into which the squeezing transforms the on-site- and
intersite-centered vortices at ω ¼ 0.024 and 0.006. The corre-
sponding critical values are ω0

c ¼ 0.023 and 0.005, respectively.
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