
 

Coherent Control of the Rotational Degree of Freedom of a Two-Ion Coulomb Crystal

Erik Urban ,1 Neil Glikin,1 Sara Mouradian,1 Kai Krimmel,2,3 Boerge Hemmerling,4 and Hartmut Haeffner1
1Physics Department, University of California, Berkeley, California 94720, USA

2Helmholtz-Institut Mainz, Mainz 55131, Germany
3QUANTUM, Institut fur Physik, Johannes Gutenberg-Universitat Mainz, Mainz 55131, Germany

4Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

(Received 13 March 2019; published 24 September 2019)

We demonstrate the preparation and coherent control of the angular momentum state of a two-ion
crystal. The ions are prepared with an average angular momentum of 7850ℏ freely rotating at 100 kHz in a
circularly symmetric potential, allowing us to address rotational sidebands. By coherently exciting these
motional sidebands, we create superpositions of states separated by up to four angular momentum quanta.
Ramsey experiments show the expected dephasing of the superposition which is dependent on the number
of quanta separating the states. These results demonstrate coherent control of a collective motional state
described as a quantum rotor in trapped ions. Moreover, our Letter offers an expansion of the utility of
trapped ions for quantum simulation, interferometry, and sensing.
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Coherent control of the collective motion of trapped-ion
Coulomb crystals is fundamental to their versatility as a
platform for quantum control. Historically, ions have
been trapped in a linear chain with motional modes well
modeled as harmonic oscillators [1–3]. However, the
utility of trapped ions for quantum simulation, fundamen-
tal physics, and sensing can be further expanded by access
to and control over collective motional modes with more
complex dynamics.
For example, consider the motion of a quantum rotor.

The energy spectrum of the angular momentum eigenstates
is quadratic in quantum number, increasing the complexity
possible in Hamiltonian engineering and enabling the
simulation of rotational dynamics of diatomic molecules
[4–6]. Moreover, the periodic boundary conditions of
angular momentum states enable fundamentally new oper-
ations such as the deterministic coherent exchange of the
ions’ wave functions [7] and the ability to create interfer-
ometry geometries new to ions [8,9]. Rotational states also
have fundamental physics applications in Aharanov-Bohm
style experiments because of their enclosed area [10,11]
and in observing Hawking radiation in acoustic analogs of
black holes [12,13]. Finally, rotor states interact with noise
in interesting ways due to their extended size and spatial
symmetry which could have applications in metrology and
sensing [14–19].
In this Letter, we describe control over the angular

momentum eigenstates of a 2D rotor formed by a pair of
40Caþ ions in a cylindrically symmetric surface-electrode
Paul trap. Through classical preparation of a high angular
momentum state, we are able to spectrally separate densely
spaced angular momentum transitions into groups according
to the number of angular momentum quanta involved in the

transition. We optically drive a group of sidebands and
observe Rabi oscillations which demonstrate that the tran-
sitions are coherent and match our presented theory.
Additionally, Ramsey experiments show the expected
dephasing due to the nonlinearity of the energy of rotor
states, a phenomenon not present in harmonic oscillator
superpositions. The capability to produce coherent super-
positions of angular momentum states not only expands the
toolbox of trapped ion experiments but also brings the
capabilities of trapped ions to the study of molecular
dynamics, periodic systems, and rotational sensing.
Our rotor is produced by loading two ions into a trap

with a single radio-frequency (rf) null. In this potential, the
mutual Coulomb repulsion of the ions repels them from
the center and they form a small ring. The potential is
created 184 μm above the surface of the trap shown in
Fig. 1(a) by applying rf to the second circular electrode
and grounding the other two circular electrodes [20]. Eight
compensation electrodes surrounding the rf and ground
electrodes are used to compensate both dipole and quadru-
pole stray electric fields at the trapping location, thereby
creating a cylindrically symmetric, 3D harmonic potential
[21]. If all in-plane dc quadrupole potentials are compen-
sated, the two horizontal trap frequencies are degenerate,
ωx, ωy ¼ 2π × 845 kHz, while the vertical trap frequency
ωz ≈ 2ωx.
In this potential, two ions form a crystal with an

equilibrium radius of r0 ¼ f½e2=ð16πϵ0Þ�½1=ðmω2
xÞ�g1=3 ¼

3.13 μm where m is the mass of 40Caþ. Such a crystal has
no preferred angular orientation within the xy plane.
Ignoring micromotion and separating out the common
mode harmonic motion, the in-plane Hamiltonian of two
ions in cylindrical coordinates is
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where ρ and ϕ are the radial and angular polar coordinates,
respectively, in the xy plane. Within the approximation of
harmonic confinement in the radial direction, this is equiv-
alent to theHamiltonian of a trapped diatomicmoleculewith
its motion confined to two dimensions [22], where the
interatomic potential is formed by the harmonic confine-
ment of the trap field and the Coulomb repulsion. This
Hamiltonian is a semirigid rotor in the angular coordinate
ϕ with radius r ¼ (½e2=ð16πϵ0Þ�f1=½mðω2

x − ω2
rotÞ�g)1=3 ≈

r0f1þ ½ω2
rot=ð3ω2

xÞ�gwhereωrot is the angular frequency of
the rotor, and a harmonic oscillator with frequency

ffiffiffi
3

p
ωx in

the radial coordinate ρ − r. These modes of motion are
coupled to each other by a Coriolis term which is small
if ω2

rot ≪ ω2
x. In this approximation, the angular eigen-

functions are YlðϕÞ ¼ ð1= ffiffiffiffiffiffi
2π

p Þeilϕ with energies El ¼
ℏðωrl2 −Dl4Þ, wherel is the quantumnumber labeling the
angularmomentumstates,ωr ¼ ðℏ=4mr20Þ ¼ 2π × 6.43 Hz
is the fundamental frequency scale of the rotor, and D ¼
4ω3

r =3ω2
x ¼ 2π × 0.50 nHz is a small perturbation to the

energy caused by centrifugal distortion of the rotor radius.
The quantum rotor exhibits nonlinear energies and dynamics
that are fundamentally different from those of a harmonic
oscillator and is a previously unexplored mode of motion in
ion crystals.
The motional modes of trapped 40Caþ ions are coher-

ently controlled by optically addressing the transition from
the electronic ground state, jSi≡ 2S1=2, to a long-lived,
metastable state, jDi≡ 2D5=2, on the spectral sidebands

created at the motional eigenfrequencies of the ion crystal
[23–25]. To allow coherent control, these sidebands must
be spectrally narrow and isolated. While a harmonic
oscillator mode creates sidebands at integer multiples of
its characteristic frequency, a rotor mode has a nonlinear
energy spectrum and thus spectral sideband addressing is
more complicated. To coherently manipulate the ion
crystal’s angular momentum states, the motional sideband
corresponding to the transition from jli to jlþ Δli must
be resolved in frequency space from all otherΔl transitions
for all initial jli which have appreciable population. In a
thermal state, angular momentum states are populated as a
Gaussian centered about l0 ¼ 0 parametrized by a standard
deviation σl related to the temperature. At the Doppler limit
(0.52 mK for 40Caþ), σl ¼ 920. Figure 1(b) shows the
expected transition frequencies of only Δl ¼ f0; 1; 2g
rotational transitions weighted by the initial state’s occu-
pation, under the condition l0 ¼ 0 and σl ¼ 2 for illus-
tration. Individual lines of various Δl transitions are
interspersed amongst each other. To address an individual
line, the stability of the energy difference between states
and the laser linewidth would both need to be well under
10 Hz, which is prohibitively narrow.
If instead the population of the angular momentum states

is centered at a sufficiently large angular momentum ℏl0,
corresponding to a rotation frequency of ωrot ¼ ℏl0=2mr2,
transitions spectrally separate from each other grouped by
their order Δl, as shown schematically in Fig. 1(c) for
ωrot ¼ 2π × 100 kHz and l0 ¼ 7850. While the individual
lines remain separated by only 2Δlωr;eff ≈ Δl × 2π ×
12.5 Hz where ωr;eff ¼ ωr − 6Dl2

0, each group as a whole
becomes individually addressable as long as the separation

(a)

(c)

(b)

FIG. 1. (a) False color optical image of the trap center. The center electrode and the outer ring are grounded while rf is applied to the
second circular electrode (red). Voltages used to create the rotating quadrupole, the fields they produce, and the relative orientation of the
ions (not to scale) are shown on the figure. (b) Frequency of angular momentum transitions relative to the carrier for a stationary ion ring,
each separated by only a few Hz. Transitions are labeled by their initial and final state quantum numbers. Heights are proportional to
occupation of the initial state quantum number for σl ¼ 2. (c) Frequency of angular momentum transitions relative to the carrier for an
ion ring rotating at 100 kHz. Groups of lines are separated by ωrot with width in frequency space of 4ωr;effσlΔl.
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between these groups ωrot is significantly greater than the
group’s width in frequency space 4ωr;effσlΔl. For this
reason, the parameter σl determines both how narrow
each transition is and which transitions can be resolved. We
use σl to characterize the width of the state in angular
momentum space throughout this Letter.
To achieve control over individual Δl transitions we

prepare a rotating (ωrot ¼ 2π × 100 kHz, l0 ¼ 7850) and
cold (σl ¼ 44) two-ion crystal in three stages. First, we
break the angular symmetry of the trapping potential with
a static, in-plane quadrupole generated by voltages
V cos ðα0 þ αiÞ applied to each dc electrode [shown in
Fig. 1(a)] where αi is shifted by π=2 relative to its
counterclockwise neighboring electrode. This pins the
orientation of the ion crystal and creates an in-plane tilt
mode of up to ωtilt ¼ 2π × 280 kHz, the orientation of
which is controllable by α0. Next, with the ions pinned, the
phase α0 of the in-plane quadrupole is ramped to accelerate
the angular orientation of the quadrupole to a final angular
velocity of 100 kHz in a time of 50 μs. The voltages are
sourced by a single arbitrary waveform generator applying
an accelerating sine wave whose phase is shifted appro-
priately for each electrode with a custom-built circuit.
Finally, after reaching the target angular velocity, the
quadrupole continues to rotate at the final speed while
the amplitude is reduced linearly to zero over 1 ms. When
the rotating quadrupole is completely turned off, the ions
continue rotating due to conservation of angular momen-
tum, and now do so in the desired symmetric potential.
Experimentally, the quoted spin-up and release times give
us the narrowest σl within our technical limitations. It is
critical to cool the in-plane tilt mode to the ground state
prior to spin-up, since the thermal occupation of the tilt
mode directly maps onto a Gaussian distribution of angular
momentum states during the release process. We find that
σl ≈ 400 when only Doppler cooling is performed on the
pinned crystal which only separates transitions up to
Δl ¼ 4 by two standard deviations. With the addition of
resolved sideband cooling of the in-plane tilt mode, σl is
reduced to 44, allowing us to potentially resolve transitions
up to Δl ¼ 42.
To control the quantum angular momentum state of the

ion crystal, we address a group of rotational sidebands of
the jSi → jDi transition (729 nm), all corresponding to the
same change in angular momentum state, Δl. In the
rotating wave approximation, the relative coupling strength
between the states jli and jlþ Δli is given by

hlþ Δljeikxxjli ¼ JΔlðkxrÞ ð2Þ

where kx ¼ k cos θ is the projection of the laser’s wave
vector in the plane of the rotor for an angle θ between the
wave vector and the rotor plane and JΔl is a Bessel function
of the first kind of order Δl. The maximum sideband order
Δlmax at which there is still significant sideband coupling

strength is proportional to the Doppler shift observed by the
laser from the rotating ions, and roughly given by Δlmax ≈
kxr ≈ 27 if θ ¼ 0. In order to consolidate the oscillator
strength into a few transitions, the excitation laser is aligned
nearly perpendicular to the rotation plane to reduce Δlmax.
A spectrum around the jSi → jDi transition [Fig. 2(a)]

after rotation preparation shows sidebands at integer multi-
ples of 101 kHz, a 1% offset from our target frequency frot.
We believe this offset is due to a small diabaticity in the spin-
up process. We fit the spectrum with the coupling strengths
from Eq. (2) and see that this spectrum is consistent with the
addressing laser positioned at an angle of θ ¼ 82.4° with
respect to the rotor plane, where Δlmax ≈ 4.
The magnitude of the coupling matrix element between

angular momentum states jli and jlþ Δli [Eq. (2)], and
therefore the Rabi frequency, is independent of l, while the
energy splitting (and hence the spectral sideband fre-
quency) does depend on l. Therefore, addressing rotational
sidebands beginning from superpositions or mixtures of
many angular momentum eigenstates yields a sum of Rabi
oscillations with slightly different detunings:

PðDÞ ¼
X
l

jclj2
Ω2

Ω2 þ δ2l
sin2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2l

q
t

�
: ð3Þ

Here, PðDÞ is the probability of the ions individually being
excited to the jDi state, jclj2 is the initial population of the
state jli, Ω is the resonant Rabi frequency, δl ¼
2ωr;effðl0 − lÞΔl is the detuning from the transition from

(a) 

(b) 

FIG. 2. (a) Measured spectrum of the ion crystal prepared at
100 kHz. The theory curve is obtained by fitting for the laser
angle using Eq. (2) and an empirical rotation frequency of
101 kHz. (b) Rabi oscillations performed on the fourth order
angular momentum sideband of a 100 kHz rotating crystal. The
two curves are measured with different laser powers but the same
rotation preparation. The data are fit for Rabi frequency, given by
Ω in the legend and a shared σl ¼ 44.3� 1.0.
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jli assuming the laser is on resonance with the center of the
distribution l0, and t is the coupling time. Taking jclj2 to
be Gaussian distributed implies a spectral linewidth of
γl ¼ 4ωr;effσlΔl. As a result, the functional form of the
Rabi oscillations given by Eq. (3) will depend on the
relative values of γl and Ω. If Ω ≫ γl, then all jli →
jlþ Δli transitions are nearly resonant and Rabi oscil-
lations can be observed with high contrast. Otherwise, there
are significant contributions from detuned transitions and
the contrast of the Rabi oscillation is reduced. This
reduction of contrast is increasingly problematic with
increasing Δl as the spread of the line in frequency space
increases. This dependence allows us to infer σl by fitting
Rabi oscillations to Eq. (3). Figure 2(b) shows Rabi
oscillations for the same state preparation (constant σl)
with two different values of Ω for Δl ¼ 4. For the blue
curve, Ω ¼ 2π × 0.7 kHz < γl ¼ 2π × 4.4 kHz. The con-
trast of the oscillations is about 25% at the π time and
saturates well below 0.5 excitation. However, with the same
preparation, the red curve with Ω ¼ 2π × 6.7 kHz shows
we can achieve oscillations with over 90% contrast on
fourth order sidebands. The theory matches the data well
for the fit value of σl ¼ 44.3� 1.0.
The high-contrast state manipulation demonstrated

above allows us to create and probe the coherence of
angular momentum superposition states with Ramsey
interferometry. Driving a π=2 pulse on a sideband Δl
from an initial state jΨð0Þi ¼ P

lcljSS;li and waiting for
a time t produces the following superposition:

jΨðtÞi ¼ 1

2

X
l

cl½jSS;li þ e−2iωr;effðl−l0ÞΔltjSD;lþ Δli

� e−2iωr;effðl−l0ÞΔltjDS;lþ Δli
þ e−4iωr;effðl−l0ÞΔltjDD;lþ 2Δli�: ð4Þ

Here we keep track of phases only to first order in Δl=l in
the rotating wave approximation and we have assumed
perfect π=2 pulses at laser frequency resonant with the
transition in the center of the distribution. This is a sum
over individual manifolds, each corresponding to a single
initial angular momentum eigenstate that acquires phase at
its own rate. Equation (4) assumes the superposition jΨð0Þi
is a pure state though a mixed state would demonstrate the
same dynamics.
If we apply a second π=2 pulse after time t, we expect a

loss of contrast at rate γl due to the width of the line in
frequency space as the phase evolution of each super-
position beats against the others. Figure 3 shows Ramsey
experiments on the first and fourth order rotational side-
bands for the same state preparation. We fit these curves to
extract σl and the overall detuning Δ with no ad hoc decay
factor included. The decay is predicted only from the
beating of different manifolds of angular momentum
eigenstate superpositions against each other. As expected,

the fourth order superposition dephases four times as
quickly as the first order. Fitting the data returns γl=Δl ¼
1.08� 0.03 kHz and agrees well for both curves. This
corresponds to σl ¼ 42.1� 1.3 which is also similar to the
state distribution observed in the Rabi oscillations.
The dephasing can also be intuitively understood in the
spatial domain. After driving a π=2 pulse, two branches
of an interferometer exist where one branch is rotating
Δl × 12.5 Hz faster than the other. Therefore, once the
ions have traveled far enough to become spatially sepa-
rated, the contrast vanishes as they are no longer able to
interfere spatially.
There are many applications for coherent control over

the angular momentum mode of a trapped ion system. For
example, the unique phase evolution between angular
momentum states of a trapped ion crystal can be exploited
for sensing and tests of fundamental physics axioms. For
example, at a Ramsey time trevival ¼ π=ωr;effΔl, the phase
of each superposition becomes an integer multiple of 2π,
manifesting as a revival in the contrast of the excitation.
Taking advantage of the symmetrization requirement to
create a fully odd or even rotational mode occupation under
particle exchange would induce an additional revival at
trevival=2, which would demonstrate the indistiguishability
of the two 40Caþ ions even as they are separated by 6.3 μm
at all times [7,26].
Moreover, if the rotation frequency could be made

comparable to the trap frequency, the control techniques
presented here could be used to study the regime inwhich the
rotational mode of the ion crystal is strongly coupled to the
stretch mode through the Coriolis force, allowing the study
of the rotational dynamics of lightly boundmolecules [6,27].
Currently, the rotation frequency is limited to a few hundred
kHz by internal electronic filtering. Additionally, the final
occupation of angular momentum states is limited by the

FIG. 3. Ramsey experiment on angular momentum sidebands
for Δl ¼ 1 and Δl ¼ 4 with an overall detuning of 6 kHz. Fits
are made with a single σl for both curves and individual
detunings and Rabi frequencies for each curve as free parameters.

PHYSICAL REVIEW LETTERS 123, 133202 (2019)

133202-4



release step of the rotational mode preparation sequence.
With a high precision voltage source, the ramping of the
quadrupole potential could in principle be optimized to
prepare the system in an angular momentum eigenstate.
In this Letter, we have implemented a protocol for

controlling the rotational degree of freedom in a symmetric
ring ion crystal. Though this work was performed with two
ions, the methods and results presented extend naturally to
larger system sizes. By preparing the system in a high
angular momentum state, we spectroscopically isolate
transitions that selectively change the rotational quantum
state. We demonstrate that angular momentum transitions
are coherent and that their behavior agrees well with theory.
This demonstrates the basic control one needs to add
rotational states to the toolbox available to the trapped
ion community. With control over these shared motional
states, we can now consider more complex Hamiltonian
engineering, simulation of more diverse systems, and new
tests of fundamental physics.
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