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Perhaps standard effective field theory arguments are right, and vacuum fluctuations really do generate a
huge cosmological constant. I show that if one does not assume homogeneity and an arrow of time at the
Planck scale, a very large class of general relativistic initial data exhibit expansions, shears, and curvatures
that are enormous at small scales, but quickly average to zero macroscopically. Subsequent evolution is
more complex, but I argue that quantum fluctuations may preserve these properties. The resulting picture is
a version of Wheeler’s “spacetime foam,” in which the cosmological constant produces high curvature
at the Planck scale but is nearly invisible at observable scales.
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The cosmological constant problem.—Quantum fluctu-
ations of the vacuum are expected to generate a very high
energy density, which should manifest itself as an enor-
mous cosmological constant. We don’t know how to
calculate this quantity exactly, and it remains possible that
it is suppressed, exponentially [1] or otherwise [2]. But
standard effective field theory arguments predict a value
Λ ∼�1=l2, where the cut-off length l is usually taken to
be the Planck length lP [3,4]. The sign of Λ depends on the
exact particle content of the Universe—bosons and fer-
mions contribute with opposite signs—but unless a remark-
able cancellation occurs, the predicted value is huge.
We do, in fact, observe an accelerated expansion of the

Universe that could be due to a cosmological constant. But
a Planck-scale cosmological constant is some 120 orders of
magnitude too large, making it what has been called “the
worst theoretical prediction in the history of physics” [5]. It
is widely assumed that Λ must either be canceled by
incredibly precise fine tuning or eliminated by some other
form of special pleading—anthropic selection [6], nonlocal
modifications of the gravitational action [7], or the like. The
problem is made especially intractable by the mixing of
scales: Λ is generated near the Planck scale, but observed at
cosmological scales.
Here I propose a simple but radical alternative. Perhaps

our universe really does have a cosmological constant of
order 1=l2, with l possibly as small as lP. In a homo-
geneous universe this would be immediately ruled out by
observation. But if Λ is generated by Planck scale fluctua-
tions, there is no reason to expect homogeneity at that scale.

This notion was anticipated by Wheeler [8], who called the
resulting picture “spacetime foam.” Note that I am not
considering fluctuations of the cosmological constant itself,
though they may also matter [9]. Rather, I am proposing
that the effects of the cosmological constant may fluctuate
in a way that averages to near zero.
For a space with a positive definite metric, it is easy to

imagine high curvature at small scales averaging to zero
macroscopically. For a spacetime, though, a cosmological
constant would seem to entail exponential expansion (if the
anisotropy is not too big [10]), and it is not clear how such
behavior can be averaged away. But this picture is too
simple: a cosmological constant can produce either expan-
sion or contraction, and as we shall see, this behavior can
vary at the Planck scale. Over a larger region, a large Λmay
thus be consistent with small average expansion.
In what follows, I make this idea more concrete. Starting

with the initial value formulation of general relativity with
an arbitrary cosmological constant, I show that a very large
class of initial data has a local Hubble constant that is huge
at the Planck scale but tiny macroscopically. For an infinite
subset of data, the macroscopic spatial curvature is also
very small, and has a vanishing first time derivative.
A “macroscopic” region here need not be very large: a
cubic centimeter already contains some 10100 Planck-size
regions.
An initial value formulation is not enough—one must

also show that these features are preserved dynamically.
Higher order time derivatives depend on finer details, and
are harder to analyze. If the initial inhomogeneities are
generated by quantum fluctuations, though, I argue that
these fluctuations should also preserve the crucial proper-
ties that camouflage the cosmological constant.
These arguments do not provide a complete answer to

the cosmological constant problem. They do not, e.g.,
explain the apparent existence of a very small Λ at
macroscopic scales. More generally, one would have to
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show that long wavelength excitations on this foamlike
background obey a macroscopic version of the Einstein
field equations, a form of the much-studied but unresolved
“averaging problem” [11]. But the results here suggest, at
least, that we may have been looking for answers at the
wrong scales.
The initial value formulation.—LetΣ be a compact three-

dimensional manifold, interpreted as a Cauchy surface of a
spacetime. The initial data for general relativity on Σ consist
of a spatial metric gij and an extrinsic curvature Ki

j. These
are not arbitrary, but must satisfy a set of constraints. If the
contribution of matter is negligible compared to the cosmo-
logical constant, these are

Rþ K2 − Ki
jKj

i − 2Λ ¼ 0; ð1aÞ

DiðKi
j − δijKÞ ¼ 0; ð1bÞ

where R is the scalar curvature of the metric gij, Di is the
covariant derivative compatible with that metric, and
K ¼ Ki

i. This is the formalism that translates most natural
into canonical quantum theory; the constraint Eq. (1a)
becomes the Wheeler-DeWitt equation, while Eq. (1b)
imposes spatial diffeomorphism invariance. It is sometimes
useful to split off the trace of the extrinsic curvature, writing

Ki
j ¼ σij þ

1

3
Kδij: ð2Þ

K is the expansion—it is the local Hubble constant, the
logarithmic derivative of the volume element—while σij is
the shear tensor. The shear scalar is defined as σ2 ¼ 1

2
σijσ

j
i.

The dynamical evolution of this data is described by the
equations

Lngij ¼ 2gikKk
j; ð3aÞ

LnKi
j ¼ −Ri

j − KKi
j þ Λδij þ

DiDjN

N
; ð3bÞ

where Ln is the Lie derivative along the unit normal to Σ,
essentially a covariant time derivative, and N is the lapse
function, which determines the position-dependent sepa-
ration of successive time slices. (For simplicity, I have
taken the shift vector to be zero.) N must be positive, but it
is otherwise arbitrary, making the evolution appear non-
unique, but solutions with different choices of N are related
by diffeomorphisms, and are thus physically equivalent.
The evolution equations [Eqs. (3a)–(3b)] and the con-

straints [Eqs. (1a)–(1b)] have rather different status in
quantum gravity. Assuming a gravitational version of
Ehrenfest’s theorem, the evolution equations should hold
for averages, but observed values of geometric quantities
will be subject to quantum fluctuations, presumably of
order one at the Planck scale. The constraints are different:

while their precise form may be modified by quantum
effects, some version of the constraints is likely to
hold exactly. In an operator formalism, for instance, the
Wheeler-DeWitt equation is the statement that the con-
straints exactly annihilate physical states [12], while in
typical path integral approaches, only configurations that
satisfy the constraints appear in the sum over histories
(though with some ambiguity [13]). The constraints thus
capture the quantum structure at the Planck scale in a way
the evolution equations do not.
We will now need two properties of the initial value

formulation: 1) The equations are time reversal invariant: if
ðg; KÞ is allowed initial data for a manifold Σ, so is ðg;−KÞ.
2) Two manifolds Σ1 and Σ2 with initial data ðg1; K1Þ and
ðg2; K2Þ can be “glued” to form a manifold Σ1#Σ2 for
which the initial data are unchanged outside arbitrarily
small neighborhoods of the points where the gluing is
performed [14,15].
More precisely, Σ1#Σ2 is topologically the connected

sum of Σ1 and Σ2, formed by cutting balls out of each
manifold and identifying the boundaries. Geometrically,
pick open sets U1 ⊂ Σ1 and U2 ⊂ Σ2, restricted only by the
generic condition that the initial data is “not too symmet-
ric,” in the sense that the domains of dependence of U1 and
U2 contain no Killing vectors. Pick points p1 ∈ U1 and
p2 ∈ U2, cut geodesic balls B1 and B2 of arbitrarily small
radius around each, and join the boundaries. Then Σ1#Σ2

admits initial data that exactly coincides with the original
data outside U1 ∪ U2 and is close to the original data, in a
suitable norm, inside U1 ∪ U2 but outside B1 ∪ B2.
Now, as a preliminary construction, pick a three-

manifold Σ with a fixed open set U and a point p ∈ U,
and specify initial data ðg; KÞ. Let Σ̄ be an identical copy of
Σ, but with initial data ðg;−KÞ. The two manifolds can be
glued symmetrically at p (see Sec. Vof Ref. [15]) to form a
connected sum Σ̃ ¼ Σ#Σ̄. By symmetry, Σ̃ will have a
reflection isometry, under which ðg; KÞ → ðg;−KÞ. While
the definition of an averaged tensor is ambiguous [11],
any average that respects this symmetry will clearly give
hKi

ji ¼ 0.
Next, much more generally, consider a large collection of

manifolds Σ1;Σ2;…;ΣN , each with its own initial data
ðgα; KαÞ. Form the glued manifold

Σ̃ ¼ Σ1#Σ2#…#ΣN: ð4Þ

As long as we do not assume a microscopic arrow of time,
the data ðg; KÞ and ðg;−KÞ for any particular Σα will be
equally likely. Thus, again, any sensible average over a
large enough number of components should give hKi

ji ∼ 0.
Exactly how fast the average will go to zero depends on
the number and distribution of manifolds and initial data
sets, but even a cubic centimeter contains some 10100

Planck-size regions.
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These results imply that hLn
ffiffiffi
g

p i ¼ 0 and hσiji ¼ 0. It is
also easy to check that hLnRi ¼ 0. To first order, the
averaged spatial geometry is thus stationary. To match our
universe, we would also like the average spatial curvature
to be small. For the initial data, the only restriction comes
from averaging the constraint Eq. (1a):

hRi ¼ 2hσ2i þ 2Λ −
2

3
hK2i: ð5Þ

It is thus evident that if hK2i is large (for positive Λ) or hσ2i
is large (for negative Λ), the cosmological constant can be
“absorbed” in fluctuations of extrinsic curvature.
Let me stress that I am not starting with a spacetime and

searching for a special hypersurface on which hKi
ji ¼ 0.

That would be an artificial procedure, and there would be
no reason to expect such a hypersurface to be physically
interesting. Rather, I am taking an arbitrary hypersurface
and giving it initial data chosen randomly from a large
collection. Further requirements may be added to make this
data “nice,” but as long as these allow Planck-scale
inhomogeneity and do not pick out a microscopic arrow
of time, the conclusions should not change.
This construction allows Σ̃ to have an arbitrarily com-

plicated topology. Indeed, any orientable compact three-
manifold has a unique decomposition as a connected sum
of “prime” manifolds [16,17]. But Σ̃ may also be topo-
logically trivial: if each Σα is a three-sphere, the connected
sum is also a three-sphere. We can thus reach a large set of
initial data by starting with any initial values, cutting out a
collection of Planck-size balls, changing the data on the
balls, and gluing them back. The geometry of the “necks”
between components is rather special, though, and it is an
open question how much of the space of initial data can be
reached this way.
For the special case of local spherical symmetry, the

construction can be made explicit [18]. This case is “too
symmetric” to meet the genericity condition for the gluing
theorem, but it is possible to construct exact initial data
on a space with topology S2 × S1 made up of alternating
expanding and contracting shells with an expansion that
averages to zero [19].
Evolution.—We have established that on an initial hyper-

surface, a large class of initial data can exhibit small average
expansion, hiding the macroscopic effect of a cosmological
constant. But is this feature preserved in time? This is a hard
question, whose answer almost certainly requires a better
understanding of quantum gravity. In particular, the evolu-
tion equations, Eqs. (3a)–(3b), are classical approximations,
which do not include the quantum fluctuations that pre-
sumably create the complex microscopic structure we are
interested in. Naively, we might have two expectations:
1) Expanding regions grow in time, while contracting
regions shrink, so if Λ > 0 the expanding regions should
eventually dominate in a volume average, although this may

take an arbitrarily long time [20]. (If Λ < 0, expanding
regionswill recollapse, so this is less of an issue [21]). 2) But
nothing in this construction picks out a preferred initial time,
so if the foamy structure is generated by quantum fluctua-
tions, it should replicate itself: expanding regions should
themselves fill up with new curvature fluctuations.
Without a better understanding of how (or whether)

quantum fluctuations generate spacetime foam, it is
unlikely that we can fully resolve this question. Still, we
can look for hints from what we do know of the evolution.
Classical evolution: Let us first ask whether the classical

evolution Eqs. (3a)–(3b) can preserve the averaged structure.
This is similar to Buchert’s question, in a somewhat different
context [22], of whether a nonequilibrium “cosmic equation
of state” can lead to a stationary averaged configuration.
This is at least a well posed question, although still a

difficult one. First, we can only hope to learn about short-
time evolution. The initial data described here typically
develop singularities, with minimal spheres in the con-
necting necks forming trapped surfaces that behave like
black hole horizons [20,23]. Independent computations
also indicate that Planck-scale fluctuations can disrupt the
causal structure of spacetime [24]. It is generally assumed
that quantum gravity will resolve such singularities, but
classically they signal a breakdown of evolution.
Second, there arewell known ambiguities in defining time

derivatives of averages. To determine the derivative of an
average h•i over a regionU, wemust specify howU changes
in time. If U is fixed in terms of some set of coordinates, the
result will not be invariant; if it is defined in terms of
geometric quantities, it will typically be time dependent.
Further, averages are often (although not always [25])
defined in term of integrals with a dynamical integration
measure, providing an added source of time depend-
ence [26].
Third, even if we know what we mean by “average,” it’s

not so clear what we mean by “time.” The splitting of
spacetime into space and time is not unique. In the present
formalism, this is reflected in the arbitrary choice of
lapse function N. In principle, the physics can be captured
by diffeomorphism-invariant, lapse-independent observ-
ables, but these are necessarily nonlocal [27], and are
poorly understood. In practice, we usually refer instead
to a “preferred” choice of lapse. For a Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmology with
homogeneous and isotropic initial data, for instance, only
a tiny class of lapse functions preserve these characteristics;
the usual claim of homogeneity and isotropy is secretly a
statement about the existence of these special lapse
functions.
In view of these problems, and taking inspiration from

the FLRWexample, we can ask whether any choice of lapse
function preserves the averaged properties of our initial
data. Let us start with the condition hKi ¼ 0. Following
Ref. [26], define spatial averages as volume integrals,
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hXiU ¼ 1

VU

Z
U
X

ffiffiffi
g

p
d3x with VU ¼

Z
U

ffiffiffi
g

p
d3x; ð6Þ

where the region U is defined in some time-independent
way. Then, from Eqs. (3a)–(3b),

d
dt

hKi ¼ 1

VU

Z
U
NLnðK

ffiffiffi
g

p Þd3x

¼ 1

VU

Z
U
Nð−Rþ 3ΛÞ ffiffiffi

g
p

d3x

¼ 1

VU

Z
U
N
�
Λþ 2

3
K2 − 2σ2

� ffiffiffi
g

p
d3x: ð7Þ

If we choose a uniform time-slicing, N ¼ 1, this
becomes dhKi=dt ¼ −hRi þ 3Λ, which is essentially the
second Friedmann equation for averaged quantities. But
given the foamy nature of the initial geometry, there is no
reason to choose a constant lapse function at the Planck
scale. As long as the integrand in Eq. (7) doesn’t have a
definite sign—that is, as long as the shear (for positiveΛ) or
expansion (for negative Λ) is large in some regions—there
will be an infinite number of choices of N for which the
right-hand side of Eq. (7) vanishes. For a topologically
complicated manifold, in particular, the curvature of the
prime factors is typically negative, while that of the
connecting necks is large and positive, so cancellation
should not be hard to achieve.
We can further choose N to be invariant under

ðg; KÞ → ðg;−KÞ, which will guarantee that any integrand
with an odd power of K will also average to zero. One
might worry that our conditions could force the average
curvature to be large. But while Eq. (7) implies
hNRi ∼ ΛhNi, for a lapse function with Planck scale
structure it can still be true that jhRij ≪ jhNRi=hNij ∼ Λ.
The second derivative is also simple:

d2

dt2
hKi¼ 1

VU

Z
U

�
ð _NþNKÞ

�
Λþ2

3
K2−2σ2

�

þ2N2KijRij

� ffiffiffi
g

p
d3x: ð8Þ

The last term contains an odd power of K, and goes to zero
for a large enough region U. The first term has exactly the
same form as Eq. (7), and _N can be specified independ-
ently, so if the first derivative can be made to vanish, the
second derivative can as well.
Higher derivatives are more complicated. L3

nK, for
instance, contains derivative terms like KΔK and higher
order correlations like hK4i − hK2i2, which probe structure
at shorter distances. But each new derivative of hKi also
comes with a new time derivative of N, which can be
specified independently. Hence there is thus no obvious
obstruction to choosing a time-slicing for which all of the
time derivatives of hKi vanish.

This is a strong claim, implying that despite the presence
of very high curvature at the Planck scale, there should
exist—at least for short times—a foliation of spacetime by
slices of vanishing average expansion. Of course, such a
foliation would itself vary rapidly at the Planck scale, but
given the foamy structure of the three-geometry, that should
come as no surprise. Whether one can simultaneously
choose a lapse function for which hRi remains small is a
more difficult question, requiring future work.
Quantum evolution: In the absence of a full quantum

theory of gravity, much less can be said about quantum
evolution. As noted earlier, though, in many approaches to
the quantum theory, the constraints—which are under much
better control here than the evolution equations—are the
fundamental objects [12,13]. Indeed, in a Wheeler-DeWitt-
type approach, a solution of the quantum constraints
centered around some superposition of connected sums
[Eq. (4)] would give a complete description of the state.
Of course, time evolution must still be hidden some-

where in such a solution. To extract this behavior, we must
address the notorious “problem of time” in quantum gravity
[28]. It has recently been proposed that solutions to the
constraints contain all possible “quantum reference sys-
tems,” with particular frames selected by the choice of
gauge-fixing [29]. This suggests a new way to pose our
question: Does a typical solution of the Wheeler-DeWitt
equation have a foamlike structure at the Planck scale in a
generic quantum reference system?More concretely, it may
be possible to introduce a particular matter “clock” to
investigate the time evolution [30,31]. For the short term,
this might be easiest in a spherically symmetric minisuper-
space model based on Refs. [18,19].
It might be interesting to connect this approach to

Hawking’s four-dimensional Euclidean spacetime foam
[32]. This would require a better understanding of the
four-dimensional evolution of our initial data. But the
necks in the connected sum [Eq. (4)] resemble throats of
Schwarzschild black holes [20,23], for which the Euclidean
continuation is well understood, so progress may be
possible. It would also be worth looking further at the
Λ < 0 case in light of the AdS=CFT correspondence. Here,
there has been interesting work on the question of which
topologies contribute, although mainly in the context of
black holes and lower dimensions [33].
What this proposal does, and does not, do.—As early as

1957, Wheeler argued that

… it is essential to allow for fluctuations in the metric
and gravitational interactions in any proper treatment
of the compensation problem—the problem of compen-
sation of “infinite” energies that is so central to the
physics of fields and particles [34].

What I am proposing is a concrete realization of this
vision. Several previous attempts have been made to model
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spacetime foam—see, for instance, Refs. [32,35,36]—but
only a few have addressed the cosmological constant
problem [37–40]. The new ingredients here are the ability
to construct a large new class of initial data and the crucial
realization that time reversal invariance allows, and perhaps
even requires, the expansion and shear to average to zero.
This proposal addresses the “old” cosmological constant

problem, the problem of large vacuum energy. It does not
tell us whether the observed accelerated expansion of the
Universe is caused by a small residual cosmological
constant. It has recently been argued that higher order
correlations of vacuum fluctuations might generate a small
cosmological constant [9,21,41]. These would presumably
show up here in higher correlations of the metric and
extrinsic curvature, which appear in higher derivatives of
averaged expansion and curvature.
While this proposal offers a natural explanation for small

macroscopic expansion and shear, the requirement of small
spatial curvature is less obvious. It is certainly possible to
choose data for which hRi is small, and there are hints that
this may be preferred by the gravitational partition function,
but a better understanding is needed. The answer may be
dynamical. In a standard closed FLRW cosmology, after
all, the spatial curvature is initially very high and decreases
in time. There is some evidence that the same is true here:
the second time derivative of the averaged curvature hRi
can be calculated, and while the result depends on the lapse
function, most of the terms are negative definite.
The proposal also does not attempt to explain the

emergence of a macroscopic arrow of time, an important
question but one that is probably logically independent.
Nor have I shown that long wavelength disturbances sitting
on top of Planck-scale spacetime foam will be described by
classical general relativity. This is the notorious “averaging
problem” [11,25,26], the problem of how the nonlinearities
of general relativity interact with the process of taking
averages. Here, though, effective field theory arguments
may help [3]. Nothing in this construction has broken
spatial diffeomorphism invariance, so the effective action
should involve only terms invariant under that symmetry.
This implies a Hořava-Lifshitz action [42], of which
general relativity is a special case. If, as I have argued,
there is also nothing “preferred” about the initial time slice,
then time reparametrization invariance should also be a
symmetry, in which case the large scale effective action
should take the usual Einstein-Hilbert form.
So far, I have treated a quantum gravitational problem

semiclassically, appealing to quantum mechanics to gen-
erate Planck-scale structure but relying on classical general
relativity to describe constraints and evolution. We might
next consider coherent states centered on the configurations
described here, and construct more general wave functions
as superpositions. But this would force us to confront some
of the standard problems of quantum gravity: the metric
and extrinsic curvature are not true observables, and to

define an average we would have to figure out what “at the
same point” means in different components of the wave
function.
Interesting technical questions remain as well. The

gluing construction I have used provides a large set of
initial data, but it is not known just how much of the total
space of initial data is covered. More generally, gluing is
certainly not the only way to produce data with no arrow of
time at the Planck scale, and a full understanding of the
measure of such data is still lacking. It would also be useful
to further investigate higher order correlations, or, con-
versely, to see to what extent further restrictions (e.g.,
hL3

nKi ¼ 0) limit the possible initial data.
For all these limitations, though, this proposal suggests a

simple and radical solution to a deep problem. If a large
cosmological constant is generated by vacuum fluctuations
at the Planck scale, then perhaps that is also the place to
look for answers. I have shown that at least in principle,
hiding a Planck scale cosmological constant in Planck scale
curvature fluctuations is not only possible, but can be
quite natural. We may have simply been looking in the
wrong place.
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