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We introduce a quantum Monte Carlo inspired reweighting scheme to accurately compute energies from
optimally short quantum circuits. This effectively hybrid quantum-classical approach features both
entanglement provided by a short quantum circuit, and the presence of an effective nonunitary operator at
the same time. The functional form of this projector is borrowed from classical computation and is able
to filter out high-energy components generated by a suboptimal variational quantum heuristic Ansatz.
The accuracy of this approach is demonstrated numerically in finding energies of entangled ground states
of many-body lattice models. We demonstrate a practical implementation on IBM quantum hardware up to
an 8-qubit circuit.
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Solving quantum many-body and electronic structure
problems is one of the most anticipated applications of
quantum computers, in view of the exponential speed-up that
can be achieved compared to classical simulations [1–3].
Despite decades of efforts, an efficient classical way to
describe many-body effects and strong correlations is still
missing, preventing classical computation of fermionic
systems from reaching the desired accuracy in large-scale
applications [4,5]. On the other hand, quantum computation
is still at its infancy and state-of-the-art calculations are
performed on so-called noisy intermediate quantum (NISQ)
hardware, of 20–50 qubits [6].
These nonideal conditions, represented by short circuit

depths and the absence of implementable error correction
schemes, call for the development of suitable algorithms able
to exploit the present resources [7,8]. In this context,
variational approaches have been proposed as near-term
strategy to solve the electronic structure problem [9–12].
These algorithms drastically reduce the coherence time
requirement, but feature optimizable parameters θ in the
circuit, generating a parametrized quantum state jψcðθÞi.
These parameters are optimized to minimize the energy
hψcðθÞjHjψcðθÞi for a given problem Hamiltonian H. The
energy is calculated as a sum of expectation values of Pauli
operators; hence, the circuit is executed multiple times to
reduce the variance of such estimates. The parameter
optimization is instead performed classically [9]. This
approach, called variational quantum eigensolver (VQE),
has been applied to small molecules and quantum magnets
[13–16], and relies on the assumption that a quantum state
prepared in a quantum computer can represent efficiently
and compactly all the correlations that are hard to encode
classically [17].
Lattice many-body models represent an ideal test bed for

developing new algorithms, since they retain all the features

that make electronic structure problems hard to simulate
classically, but without the specific overcomplication of
quantum chemistry [18].
A concrete example is the Hubbard model, which is

perhaps the most extensively studied condensed matter
system, as it serves as a minimal model for high-temperature
superconductors [19] and other correlation-driven phase
transitions [20]. Polynomially scaling classical algorithms
can obtain accurate solution only under particularly sym-
metric conditions such as two-dimensional (2D) lattices at
half-filling [5].
The most advanced classical algorithms, such as quan-

tum Monte Carlo (QMC) calculations or density matrix
renormalization group theory [21] are also characterized
by underlying variational states. Interestingly, it has been
noted that results may depend on the structure of the
variational form used. An example is the debated existence
of the so-called stripe order, which is a state displaying
charge and spin modulations, in the underdoped region of
the 2D Hubbard model [22–26]. Other examples concern
the proposed spin-liquid character of the Heisenberg
antiferromagnet on the kagome lattice [27,28], the varia-
tional description of frustrated spin models [29], and Mott
insulators [30].
The need for an accurate and easy to prepare variational

trial state is transferred in the realm of quantum computation.
In the VQE approach, the trial state’s ability to describe
the desired physical state is determined by the set of gates
composing the quantum circuit and is limited by the
affordable circuit depth. Because of the limited coherence
time of present NISQ machines, it is only possible to run
relatively short circuits, with a detrimental impact on the
accuracy of the calculation. For example, the unitary coupled
cluster Ansatz [31], which is the quantum counterpart of
the celebrated coupled-cluster technique [32], has been
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proposed as a polynomially scaling quantum circuit to solve
quantum chemistry problems. However, the number of gates
necessary to achieve chemical accuracy, even on small
molecules, is simply too large to be successfully executed
on NISQ devices [33].
Heuristic circuits, which implement hardware-efficient

gates, represent a more realistic approach in the short term,
and have been already demonstrated in several small chemi-
cal [14,15,34] and lattice model examples [35]. However,
they suffer from the same coherence time limitation when
investigating larger systems [34].
In this Letter, we introduce a hybrid quantum-classical

type of trial states Pjψci, which exploits both the entangle-
ment offered by a short quantum circuit, and projective
pseudodynamics, implemented at the classical level, through
measurement postprocessing. Here, the projector P filters
out the unwanted high-energy components from the sub-
optimal trial state jψci, produced by the circuit, and is
inspired by established correlated methods, such as varia-
tional Monte Carlo calculations [5].
We propose two quite different practical approaches to

implement the nonunitary operator P. In the first, the
information stored in an ancillary register is used to reweight
the measurements performed on the N—qubit circuit regis-
ter. The second strategy does not require ancillary qubits
but the evaluation of the modified Hamiltonian PHP.
Depending on the complexity of P, this translates in a
polynomial increase of the number of Pauli terms tomeasure.
Projectors in QMC.—xThe projector P (partially)

removes the residual components of the circuit Ansatz
jψci having negligible overlap with the target state (see
Supplemental Material [36]). We adopt physically moti-
vated projectors, borrowing inspiration from classical
simulations. These are the so-called Jastrow functions,
widely used in the QMC community in solving lattice
models [37,38] and continuous systems [39], in both first
[40–43] and second quantization [44,45].
For example, a particularly simple but effective projec-

tor, the so-called Gutzwiller operator [46], counts the
number of doubly occupied sites in a lattice, removing
such high-energy components in the Hubbard model at
large U. The same operator may as well suppress ionic
terms naturally arising from a simple single-particle prod-
uct state description of molecular dissociation.
Jastrow quantum circuit states.—The strategy we pro-

pose in this Letter is to act directly on the N-qubit space,
e.g., in the case of the Hubbard model, after the Jordan-
Wigner mapping of fermionic operator to the qubit space
[3,35]. A long-ranged spin Jastrow operator is then applied
to the circuit Ansatz, using the projector

PJ ¼ eJ; J ¼
XN

k;l¼1ðk≠lÞ
λklσ

z
kσ

z
l ; ð1Þ

where σαk are Pauli matrices, and λk;l are NðN − 1Þ=2
variational parameters. The number of effective optimiz-
able parameters λ can be reduced by applying lattice
symmetries, for example, by assuming that the value of
λk;l only depends on the distance between qubits k and l.
The Jastrow correlator can be generalized also to three and
more spin interactions. For the sake of brevity, we propose
the name Jastrow quantum circuit (JQC) for the PJjψci
state, reminiscent of the Jastrow-Slater determinant (JSD)
wave functions used in electronic QMC calculations
[39,47]. In our case the qubit Jastrow operator improves
the description of spin correlations by acting on the circuit
Ansatz, whereas in the classical counterpart it is applied to a
mean-field starting state, which imposes the correct (anti)
symmetrization of the system. Moreover, it easily includes
all possible two qubits k, l interactions being not con-
strained by the available hardware connectivity [48].
Accuracy of the JQC variational states.—We tested the

accuracy of the JQC Ansatz on three popular many-body
models in one dimension: the transverse field Ising model,
HIsing ¼ −

P
L−1
k;l¼0ðk≠lÞ σ

z
kσ

z
l þ Γ

P
L−1
k¼0 σ

x
k, the Heisenberg

model HHeis ¼ −
P

L−1
k;l¼0ðk≠lÞ σ

z
kσ

z
l þ Λðσxkσxl þ σykσ

y
l Þ, and

the Hubbard model HHub¼−t
P

L−1
k¼0

P
s¼↑;↓ðc†k;sckþ1;sþ

c†kþ1;sck;sÞþU
P

L−1
k¼0ðc†k;↑ck;↑c†k;↓ck;↓Þ at half-filling, where

c†k;s (ck;s) are fermionic creation (destruction) operators at
site i, and t, U are the hopping and on-site Coulomb
repulsion parameters, respectively. While the first two
models do not require any mapping, being already spin
Hamiltonians (therefore N ¼ L), we use the mapping
between spinful electrons and qubits, illustrated in
Refs. [38,49], to map a L-site Hubbard model into a
N ¼ 2L qubit register with ladder connectivity (see also
Supplemental Material [36]).
In this Letter we use a primitive heuristic Ry-CNOT circuit.

The circuit Ansatz is represented by jψcðθÞi ¼ UcðθÞjψ initi,
whereUcðθÞ is the unitary operator representing the circuit,
θ is the set of total d N single-qubit rotation angles, where d
is the circuit depth, and jψ initi is an easy-to-prepare bit
string. While such type of circuit requires an affordable
number of entangling gates (CNOT) per block, it may not
respect basic symmetries of the desired solution, compat-
ible with the particle and spin number conservation [34].
In this case, the nonunitary Jastrow operator will effec-

tively project out wave-function components of jψci having
particle number and magnetization incompatible with the
Heisenberg andHubbardmodels.While the Jastrow operator
cannot recover the exact energy by itself, irrespectively of
the circuit, it uniformly improves the standard VQE Ansatz
jψcðθÞi, for all the three models considered. In fact, as we
observe a several order-of-magnitude improvement of the
energy at fixed circuit depths (see Fig 1).As discussed above,
the total number of variational parameters in the set ðθ; λÞ is
linearly increasing with N, if appropriate lattice symmetries
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are taken into account [36], or if a cutoff is imposed on the
correlation lengths considered in Eq. (1). While in Fig. 1 we
benchmark the quality of the Ansatz at fixed system sizes by
varying the model parameters, in the Supplemental Material
we investigate the efficiency of our method as a function of
the system size [36]. These results have been obtained
simulating the circuit in noiseless conditions and applying
exactly the Jastrow operator on the state vector jψci. Since
the JQC state is not normalized to unity, the normalization
has been computed numerically.
Implementation 1: Using entangled copies.—Differently

to classical simulations, implementing the projector is not
as straightforward. In this section we will illustrate the
general procedure, while developing in parallel an example

(a L ¼ 2 sites Ising model). The standard VQE approach
would require a 2-qubit circuit, and measuring expectation
values of the ZZ, XI, and IX operators, to calculate the
energy of the model [14]. In practical approaches (as
implemented in the QISKIT package [50]) this is done
partitioning the Hamiltonian in groups of operators that can
be measured simultaneously H ¼ P

b Hb, in a given basis
b. The expectation value hHbi is evaluated by reconstruct-
ing the bit-string probability PbðiÞ in the b basis, through
measurements (here the label i denotes the integer encoded
in the L-bit string) [51]. Suitable unitaries (called post-
rotationsRα) allows us to measure in different bases. In this
example, to measure the nondiagonal operator we need
Rα ¼ H, where H is the Hadamard matrix.

FIG. 2. Hardware implementation and classical postprocessing. (Left) Circuit realizing the entangled copy of the state produced by the
variational block (blue). The most tested variational form in this work is the Ry CNOT, made by d repetitions of blocks. Each of them
features L parametrized single qubits rotations Ry, and a cascade of L-1 CNOT gates. Postrotations are applied only on L qubits to
measure outcomes in a given basis b. (Right) For each basis b, the normalized measured count P̄b of the 2L-bit possible outcomes (each
of them univocally defined by the integer 2Ljþ i), is reweighted according to the Jastrow function. The probability distribution Pb,
defined on L-bit strings, is then recovered and used to evaluate the expectation value of Hb (see main text).

FIG. 1. Accuracy of the JQC state for one-dimensional many-body problems. Relative energy differences are shown as a function of
the relevant Ising, Heisenberg, and Hubbard model parameters. Energies computed for selected circuit depths d are plotted for the circuit
Ansatz (empty symbols, blue and green) and for the JQC (solid, red, and orange). All system sizes translate into a N ¼ 8 qubit register.
While the JQC Ansatz always improves upon the circuit one, notably the worst performance is around the critical points of the models,
i.e., when Γ, Λ,U=4t ¼ 1, respectively. The number of Jastrow optimizable variational parameters, exploiting lattice symmetries, is 7 in
the case of Ising and Heisenberg models, and 10 for Hubbard (see Supplemental Material [36]). For each setup we plot the best outcome
among several repetitions of the numerical optimization procedure.
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In our approach, we need to combine the possibility of
measuring the qubits after applying the postrotations, with
the requirements to also read the qubits in their Z basis, to
evaluate Eq. (1). This is possible only by introducing an
ancillary register of the same size L. We use the ancilla
register to store an entangled copy of the original register,
using CNOT gates as in Fig. 2. In this specific case, the total
register now reads fq0; q1:q2; q3g, where the first L ¼ 2
qubits evolve through the circuit, and the last ones are
initialized to 0. The L-bit outcome j of the ancilla register
measurement determines a weight wðjÞ, to be applied to the
2L-bit readout, labeled with the integer 2Ljþ i. The only
additional step required is to reconstruct the reduced prob-
ability of the original 2-bits components PbðiÞ, given the
total probability of the 4-bits strings P̄bð2Ljþ iÞ, which is
actually measured and then reweighted (see Supplemental
Material [36]).
In Fig. 3 we benchmark the proposed reweighting

scheme on synthetic measurements (i.e., using circuit
simulators, with and without noise), and real datasets from
IBM Q hardware, Tokyo and Tenerife, using L ¼ 2 and
L ¼ 4 Ising models, and with two different circuit Ansätze.
The first circuit is made of two Hadamard gates,

Uc ¼ H ⊗ H, that produces an equal superposition state
Here, it can be shown analytically that a two-spin Jastrow
operator [see Eq. (1)] suffices to amplify (suppress) the
components having even (odd) parity, recovering the
(unnormalized) exact state, for λ ¼ λ01 ≈ 0.24 [52].
The obtained energies from the circuit simulations and the

Tokyomachine data are compatible with the predicted values
at various λ, obtained by state-vector emulations of the
process. We observe that for the Tenerife hardware data the
one-parameter Jastrow operator is not sufficient to recover
the exact energy of the model, because of the noise level of
the hardware. Nevertheless, the Jastrow operator allows us to
improve the circuit energy, although for a different value of λ
compared to the theoretically predicted one.
The technique is also demonstrated on a more challeng-

ing L ¼ 4 system (which translates into a 2L ¼ 8-qubit
register). Here, the Jastrow projector recovers the energy
difference between a heuristic Ry-CNOT (with d ¼ 1 and
optimized θ parameters) energy Ec and the exact one.
Implementation 2: Measuring a transformed

Hamiltonian.—The second implementation we propose
requires additional Pauli operators to be measured, instead
of ancilla qubits. Computing the expectation value of
the energy on the JQC state E ¼ hPJψcjHjPJψci=
hPJψcjPJψci, it is equivalent to measure the ratio of
PJHPJ and PJPJ operators on ψc. Unfortunately, we
notice that Eq. (1) results in an exponentially increasing
number of Pauli operators with the register size. However, a
suitably truncated expansion P0

J ¼ 1þ J þ J2=2þ � � �,
controlled by the smallness of the parameters λ, can still
be effective while reducing the number of operators to
polynomial scaling (we report numerical benchmarks in the
Supplemental Material [36]).

Conclusions.—We introduce hybrid quantum-classical
states to solve many-body lattice models, drastically
reducing the depth requirements of the heuristic circuits
to reach target accuracy, by leveraging on the use of
nonunitary operators [53]. The approach is variational,
and after full optimization of the Jastrow parameters the
energy is always better or—in the worst case—equal to the
one provided by the circuit Ansatz. Two practical schemes

FIG. 3. JQC Ansatz on hardware and circuit simulators. (Top
panel) Energy difference of the JQC states compared to the circuit
energy Ec for a L ¼ 2 Ising model as a function of the single
Jastrow parameter λ (see main text). The circuit considered is
Uc ¼ H ⊗ H. The black (gray) line represents the exact energy
of the JQC Ansatz (of the Ising model). Colored points are
obtained implementing the extended circuit of Fig. 2 with
simulators (green, noiseless simulator; blue, noise model from
IBM Tokyo chip) and with hardware (red, IBM Tokyo chip;
orange, IBM Tenerife), and using the measurements reweighting
method introduced in the main text. For each λ point we
reconstruct P̄b, for the two basis, using 8192 shots. Error bars
are computed repeating this process Mrep ¼ 12 times. The JQC
state reduces to ψc for λ ¼ 0. (Bottom panel) Same analysis as
above, but on a L ¼ 4 system and using an entangled RyCNOT

circuit. Here, the Jastrow operator contains three variational
parameters, this set λopt is optimized beforehand. In order to
have a one-dimensional plot we multiply them elementwise by λ,
such that when λ ¼ 1 we reobtain the optimal solution. In the
noiseless simulator case we acquire 2 × 106 shots, with
Mrep ¼ 24. In the noisy simulator (hardware) case we acquire
1.6 × 105 (2.5 × 104) shots, and Mrep ¼ 12ð24Þ. In the latter
cases, a rigid shift of ≈0.15 is applied to the data series so that the
λ ¼ 0 point is at E − Ec ¼ 0.
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have been proposed to realize such states in the present
hardware. The most promising one requires an additional
ancillary register. This method relies on measurement
reweighting and allows for an exact implementation of
the Jastrow correlation operator, while it does not increase
the number of Pauli operators to be measured, that already
constitutes a drawback of standard VQE [12]. The approach
has been demonstrated using an 8-qubit circuit in the IBM
Tokyo chip, providing quantitative energetics for the test
case Isingmodel. We notice that this implementation extends
the scope of the recently proposed stabilizer-VQE method
[54], where measurements are simply discarded using an
error detection scheme. In this case, the projector allows
us to improve the accuracy of the VQE Ansatz, while also
mitigating the possible errors. A possible issue of these
approaches may arise when the VQE Ansatz and the exact
state have negligible overlap. In our case, an increased
statistical fluctuation of the energy would be a fingerprint
that most of the measurements are reweighted to zero.
While this issue is not present in the studied cases (see
Supplemental Material [36]), it will call for the development
of synergic circuit and projector operators. We anticipate
the use of suitably modified projected circuit states for
solving quantum chemistry problems.
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