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Conformations of partially or fully adsorbed semiflexible polymer chains are studied varying both
contour length L, chain stiffness, κ, and the strength of the adsorption potential over a wide range.
Molecular dynamics simulations show that partially adsorbed chains (with “tails,” surface attached “trains,”
and “loops”) are not described by the Kratky-Porod wormlike chain model. The crossover of the
persistence length from its three-dimensional value (lp) to the enhanced value in two dimensions (2lp) is
analyzed, and excluded volume effects are identified for L ≫ lp. Consequences for the interpretation of

experiments are suggested. We verify the prediction that the adsorption threshold scales as l−1=3
p .
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Introduction.—Adsorbed stiff macromolecules on sub-
strates are of key interest in understanding the properties
and function of various nanomaterials and also play an
important role in the biological context [1–7]. While
adsorption of flexible polymers has been extensively
studied [8–12], the adsorption transition of semiflexible
polymers is much less understood [13–23]. For flexible
polymers, the salient features of this transition are well
captured [10–12] by the simple self-avoiding walk lattice
model of polymers [24]. However, extending the model to
semiflexible polymers [13,20] misses important degrees of
freedom, namely, chain bending [25] by the small bending
angle θ. Consequently, most work uses the Kratky-Porod
(KP) [26] wormlike chain model: in the continuum limit the
chain is described by a curve r⃗ðsÞ in space, the only energy
parameter κ considered relates to the local curvature of the
polymer. The Hamiltonian

H
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2

Z
L

0

ds

�
d2r⃗ðsÞ
ds2

�
2
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yields for the tangent-tangent correlation function, an
exponential decay with the distance n between two bond
vectors (n ¼ s − s0) along the chain backbone,

CðnÞ ¼ hcos θðnÞi ¼ e−n=lpðd ¼ 3Þ; or e−n=2lpðd ¼ 2Þ;
ð2Þ

with lp ¼ κ the persistence length. There are two prob-
lems. (i) While in d ¼ 3 dimensions, excluded volume
interactions between the effective monomer units of the
polymer come into play only for extremely long chains
when lp ≫ 1 (measuring lengths in units of the distance

lb ¼ 1 between the subsequent monomers along the chain)
[27], in d ¼ 2, deviations from Eq. (2) start when s − s0
exceeds 2lp distinctly, and a gradual crossover to a
power-law decay, hcos θðs − s0Þi ∝ ðs − s0Þ−β with β ¼
2ð1 − νÞ ¼ 1=2 [28] begins. Strictly in d ¼ 2, chains
cannot intersect, and for L ≫ lp, excluded volume matters.
(ii) In fact, adsorbed chains exist to some extent “in
between” the dimensions [remember the well-known
[11] description in terms of trains, tails, and loops,
cf. Fig. 1(a): tails and loops exist in d ¼ 3, trains reside
(almost) in d ¼ 2]. If the adsorption potential, UðzÞ, with z
being the distance from the (planar) adsorbing substrate, is
very strong, tails and loops will be essentially eliminated,
but in real systems, the adsorption then must be expected to
be irreversible [29]. While single-stranded DNA (ssDNA)
on graphite [7] and double-stranded DNA (dsDNA) on
lipid membranes [6] have been shown to equilibrate by
diffusion in the adsorbed state, no diffusion is observed for
more bulky polymers such as dendronized polymers (DPs)
[30]. Adsorbed bottle-brush polymers [31] or DPs are
intriguing since lp for such polymers can be systematically
varied by choosing different side chain lengths (for bottle
brushes [32]), or different generations (for DPs [30,33,34]).
However, experiments reveal subtle effects of surface
roughness [30] and electrostatic interactions [30], thus,
making the interpretation of the observed persistence
lengths difficult.
Model.—In the present Letter, we elucidate the meaning

of lp for experimentally observed semiflexible polymers
by means of molecular dynamics (MD) simulations using a
bead-spring model as studied previously in both d ¼ 2 [35]
and in d ¼ 3 [36], assuming dilute solutions under good
solvent conditions. All beads interact with a truncated and
shifted Lennard-Jones (LJ) potential,
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where ULJ ¼ 0 for distances r > 21=6σ, ϵ being chosen as
unity, ϵ ¼ kBT ¼ 1, and the range σ ¼ 1. Equation (3),
therefore, means that excluded volume effects are fully
accounted for. Chain connectivity is ensured by the finitely
extensible nonlinear elastic (FENE) potential [37],
UFENEðrÞ ¼ −ð1=2ÞkR2

0 lnð1 − r2=R2
0Þ, with R0 ¼ 1.5σ,

k ¼ 30 (the average bond length lb is then roughly

0.976). The bond bending potential is taken as Ub ¼
κð1 − cos θÞ ≈ 1

2
κθ2, compatible with Eq. (1), θ being the

angle between subsequent bonds.
A popular measure of lp, then, is [32] lb=lp ¼

− lnhcos θi ≈ 1
2
hθ2i, for κ ≫ 1. This relationship yields

the results displayed in Fig. 1(b), i.e., lp=lb ≈ κ, irre-
spective of the chosen substrate potential
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which has a minimum UwallðzminÞ ¼ −ϵwall at zmin=σ ¼
ð5
2
Þ1=6. In the simulations below, varying ϵwall and the chain

lengthN, we have carefully monitored that, on the available
time scale (of the order of up to 10 million MD time units),
equilibrium is reached. In each case, 50 runs (carried out
in parallel using graphics processing units) were aver-
aged over.
Results.—While for small ϵwall, the chains are essentially

nonadsorbed mushrooms (one chain end being fixed at
the surface), for ϵwall ≈ 1.0, all monomers are bound to the
wall; i.e., a quasi-two-dimensional conformation occurs.
Surprisingly, for neighboring bonds, s − s0 ¼ 1, the
expected change of the effective decay length leff

p of
orientational correlations from lp to 2lp (2lp is readily
seen for strictly d ¼ 2 chains [35]) is not observed.
This finding is rationalized by considering two subsequent

bonds, the first bond from r⃗j−1 to r⃗j, the second from r⃗j to
r⃗jþ1, [cf. inset to Fig. 1(b)]. Choosing polar coordinates to
describe the bonds r⃗j − r⃗j−1 ¼ lbð− cosαj; 0; sin αjÞ and
r⃗jþ1 − r⃗j ¼ lbðcosαjþ1 cosϕ; cos αjþ1 sinϕ; sin αjþ1Þ, for
small angles θ between the bonds, one has θ2 ¼
ϕ2 þ ðαj − αjþ1Þ2; therefore, also for an adsorbed polymer,
the bond angle θ is composed from 2 transverse degrees of
freedom. Only if the wall potential would constrain all
positions fzjg strictly to zmin, one would get αj − αjþ1 ≡ 0,
that is, a single transverse degree of freedom. There are slight
deviations from the result lp=lb ¼ κ in Fig. 1(b). However,
when one follows hcos θðnÞi for large distances n along the
contour, Fig. 2(a), one reproduces Eq. (2) strictly only for the
nonadsorbed mushrooms; for all the weakly adsorbed
chains, instead, the strong curvature of the semilog plot
shows that an interpretation by Eq. (2) with a single decay
length is inadequate. While quantitative details in Figs. 1
and 2 depend on the specific chain model and the wall
potential, the fact that hcos θðnÞi is not compatible with
Eq. (2) for weakly adsorbed chains even at large n and for
strongly adsorbed chains applies only if both lp and n are
large is a generic feature. For strongly adsorbed chains, a
crossover of the effective decay length lp to about 2lp

occurs when n is significantly larger than 1. The further
crossover to the power law [28] CðnÞ ∝ n−1=2 for n ≫ 2lp

in Fig. 2(a) sets in slowly, the fully developed power law

FIG. 1. (a) Snapshot of an adsorbed chain with N ¼ 500 for
κ ¼ 16, ϵwall ¼ 0.65. Loops and a tail are shown in green, trains
are in dark blue. (b) Decay length leff

p =lb vs stiffness κ for N ¼
250 and several choices of ϵwall. Here, n ¼ 1 means an angle
between nearest bonds, n ¼ 2 stands for next-nearest bonds. Data
for n ¼ 1, 2 indicate that leff

p increases rather gradually with κ for
adsorbed chains. The inset illustrates the geometry of the x, z
coordinates of two subsequent bonds where the X axis is chosen
such that the bond from r⃗j−1 to r⃗j lies in the X, Z plane. The
angles αj ¼ ðπ=2Þ − ϑj are the complements to the polar angles
ϑj of the bonds with the Z axis.
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is not seen here, it would require to study by far longer
chains. To separate the excluded volume (EV) effect from
the crossover lp → 2lp caused by adsorption, we simulate
chains where Eq. (3) between nonbonded monomers was
omitted, Fig. 2(b). One sees that leff

p reaches the value 2lp

only for large κ.
The gradual crossover from e−n=lp to e−n=2lp with

increasing ϵwall, and the precise range of ϵwall where this
occurs, reflect the region over which the adsorption
transition is rounded (owing to the finite chain length N)
and depend on κ as well. The rounded transition is
monitored by studying the lateral chain linear dimensions,
Fig. 3, or local order parameters, the fraction f of adsorbed
monomers, defined by f¼R

ρðzÞUwallðzÞdz=
R
UwallðzÞdz,

Fig. 4(a), or the orientational order parameter of the bonds
η ¼ 3

2
hcos2 ϑi − 1

2
, ϑ being the angle of a bond with the

surface normal, Fig. 4(b). For the shown medium chain
lengths, EV effects for nonadsorbed chains are negligible
for all κ. They are, however, present for N ¼ 100 for
adsorbed chains with κ ¼ 5 and 8, whereas for N ¼ 250,
data for adsorbed chains with κ ¼ 16 and κ ¼ 25 are also
already slightly affected by excluded volume. These find-
ings are certainly compatible with experiment: for ssDNA
with lp ≈ 4.6 to 9.1 nm, depending on the ion concen-
tration in the solution, evidence for hR2ðsÞi ∝ s2ν with ν ¼
0.73 was presented [7], in contrast to the KP prediction
hR2ðsÞi ∝ lps. Even for long enough dsDNA with lp ¼
50 nm (with effective diameter σ ¼ 2 nm, this would
correspond to κ ¼ 25 in our model), the d ¼ 2 SAW-type
behavior was observed clearly [6]. Thus, the suggestion [4]
to estimate lp from the KP expression by means of AFM
measurement on DNA in the limit L ≫ lp must be taken
with due care since significant systematic errors may occur
when both L and lp are used as adjustable parameters.
Figure 3 also includes a rough estimate of the lateral

part of the mean-square gyration radius of nonadsorbed
mushrooms (hR2

gxyi≡ hR2
gxi þ hR2

gyi ≈ 2=3hR2
giKPd¼3 (with

hR2
giKPd¼3 being the result of the KP model in d ¼ 3). For

large ϵwall, the data roughly converge towards the corre-
sponding predictions in d ¼ 2 dimensions hR2

giKPd¼2 (pro-
vided κ is large enough too). Denoting np ≡ N=lp (where
lp is the d ¼ 3 persistence length), one has in d ¼ 2

3hR2
gi

2lpL
¼1−

6

np

�
1−

4

np

�
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4
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�
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FIG. 2. (a) Semilog plot of CðnÞ ¼ hcos θðnÞi, vs n in semilog
coordinates for κ ¼ 8 (main panel) and κ ¼ 16 (inset). Several
choices of ϵwall are shown, as indicated. All data are for N ¼ 250.
(b) The same as in (a) but for strongly adsorbed (ϵwall ¼ 0.80,
1.00) chains with stiffness κ ¼ 5, 8, 16, 25 without EV inter-
actions. The inset indicates the gradual crossover in the decay of
CðnÞ with n for κ ¼ 8 and n ¼ 1, 2 from leff

p ≈ 8 to leff
p ¼ 12.3

for large n.
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FIG. 3. Mean-square lateral gyration radius for N ¼ 250 vs
ϵwall for seven choices of κ with (full symbols) and without (open
symbols) excluded volume (EV) interactions. EV is more
important for small κ (κ ¼ 5, 8). Horizontal straight lines show
KP predictions for d ¼ 3 (for small ϵwall) and d ¼ 2 (for larger
ϵwall). The shaded transition region from nonadsorbed to ad-
sorbed chains narrows down with growing κ.
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whereas in d ¼ 3, the same expression holds, yet with lp

being replaced by lp=2 (also in np).
It is clear from Fig. 3 that the KP model, Eq. (5), is

inapplicable in the broad (shaded) transition region from

weakly to strongly adsorbed chains. The chain conforma-
tions contain, here, large loops (whereby lp appropriate for
d ¼ 3 applies) as well as some trains (where leff

p ≈ 2lp).
But even if the chains are so strongly adsorbed that loops no
longer occur, leff

p is less than 2lp for intermediate values of
κ, as Fig. 2(b) shows: A decay law CðnÞ ¼ A expð−n=leff

p Þ
is observed, with A < 1 and leff

p < 2lp. Using these results
to modify Eq. (5), we can account for the actual values of
hR2

gi in the strongly adsorbed regime shown in Fig. 3 for
those chains where EV is switched off. Thus, e.g., for
κ ¼ 8, ϵwall ¼ 1, N ¼ 250, Eq. (5) would yield a hR2

gi of
1039 while the observation is about 847 only. Taking into
account that neffp ¼ 36.55 instead of np ¼ 31.125, and the
reduction by A ¼ 0.93 [see Fig. 2(b)], we predict 845, in
very good agreement with the simulation. Of course, for
such not very stiff and rather long chains, the complete
neglect of excluded volume is not warranted, as R2

g ¼ 1167

for the chain with EV shows. As seen in Fig. 2(a), EV also
causes onset of curvature in the semilog plot of CðnÞ. Thus,
Gaussian statistics, as implicit in the KP model for L ≫ lp,
is clearly inadequate. Only for all the data without EV, the
modified KP model (with leff

p rather than 2lp) can account
for the results qualitatively.
Since the adsorption transition becomes a well-defined

(sharp) phase transition only for N → ∞, and then the
theory predicts [17] that f ∝ ðϵwall − ϵcrwallÞ for ϵcrwall <
ϵwall < ϵsatwall for semiflexible polymers, we plot f vs ϵwall
in Fig. 4(a) for N extending from N ¼ 50 to N ¼ 500.
Indeed, the data are qualitatively compatible with this
prediction, and the estimates, ϵcrwall, thus obtained comply
within error bars with the predicted [17] behavior
ϵcrwall=kBT ∝ ðlp=lbÞ−1=3 ¼ κ−1=3, cf. Fig. 4(c). This is
qualitatively understood by decomposing the adsorbed
chain into straight pieces of length λ ∝ l1=3

p Δ2=3, Δ being
the range of the adsorption potential while λ is the
“deflection length”[25]. The transition occurs when the
energy won by one such piece is of order kBT. Figure 4(a)
also shows estimates of ϵsat where f gradually reaches
saturation, f → 1. However, while with increasing κ, the
curves f vs ϵwall do become steeper, we are still far from
the first-order-like behavior predicted [17] for κ → ∞.
Conclusions.—In summary, using a bead-spring

model with a bond-angle potential where the nonbonded
part of the excluded volume potential between monomers
is either included or switched off, a test of the KP
description of the adsorption of semiflexible polymers is
presented. Unlike previous lattice model work (predicting
ϵcrwall ∝ 1=lp), we verify Semenov’s [17] prediction

ϵcrwall ∝ 1=l1=3
p . Reference [17] presents a precise descrip-

tion of the adsorption of ideal wormlike (KP) chains and
explains why previous attempts (apart from considerations
based on the unbinding transitions [16]) failed. While near
the transition (for very stiff chains), excluded volume is
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FIG. 4. (a) Fraction f of adsorbed monomers vs ϵwall for κ ¼ 16
(left panel) and κ ¼ 25 (right panel), for the four chain lengths
N ¼ 50, 100, 250, and 500, respectively. Tentative linear extrap-
olations indicate the estimated location of the adsorption tran-
sition, ϵcrwall, (nonzero f for ϵwall < ϵcrwall is a finite-size effect).
Also, the estimation of ϵsatwall, where f crosses over to saturation
value f ¼ 1, is indicated. (b) Adsorbed fraction f plotted vs ϵwall
for N ¼ 250 and four choices of κ (left), and orientational order
parameter of the bonds η ¼ 3

2
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2
vs ϵwall (right). Data

with no EV interaction (open symbols) are also included.
(c) Variation of the critical adsorption potential ϵcrwall with chain
stiffness κ for N ¼ 250.
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unimportant, it matters for strongly adsorbed quasi-2D
chains. We show that the concept of persistence length is
not useful for weakly adsorbed chains, and for the strongly
adsorbed chains, we demonstrate that the lp → 2lp change,
predicted by the KP model, only holds for very large lp. We
expect that these findings will help the proper interpretation
of experiments on adsorbed ssDNA and dsDNA.
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