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Thin nematic elastomers, composite hydrogels, and plant tissues are among many systems that display
uniform anisotropic deformation upon external actuation. In these materials, the spatial orientation
variation of a local director field induces intricate global shape changes. Despite extensive recent efforts, to
date there is no general solution to the inverse design problem: How to design a director field that deforms
exactly into a desired surface geometry upon actuation, or whether such a field exists. In this work, we
phrase this inverse problem as a hyperbolic system of differential equations. We prove that the inverse
problem is locally integrable, provide an algorithm for its integration, and derive bounds on global
solutions. We classify the set of director fields that deform into a given surface, thus paving the way to
finding optimized fields.
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Many fiber-reinforced thin biological tissues [1–4] and
synthetic sheets of responsive materials [5–9] deform into
their desired shapes by a uniform anisotropic deformation.
Upon actuation these effectively 2D materials expand by a
constant factor along the fibers and shrink by a different
factor along the perpendicular direction. While the length
variations along these principal axes are constant across
the material, the spatial variation in the direction of the
principal axes allows this simple mode of uniform defor-
mation to result in rich and intricate shapes.
The fiber orientation is described by the field n̂ðrÞ called

the director. Together with the spatially constant shrinkage
or expansion factors, the director field uniquely defines the
two-dimensional geometry that is obtained upon actuation.
The actuation can be achieved through changing a variety
of ambient conditions: temperature or light in liquid crystal
elastomers [10–12], humidity for a variety of plants [1–3],
and immersion in water in fiber-reinforced hydrogels [5].
Predicting the geometry obtained upon activation as a

function of the prescribed director field has been recently
resolved [13–16]. This geometry, captured by the two-
dimensionalRiemannianmetric, however, does not uniquely
define the obtained surface. A given metric will correspond
to a wide and typically continuous family of surfaces. The
geometric rigidity that arises from Gaussian curvature sign
variations as well as imposed boundary conditions serve to
narrow down this wide family. Nonetheless, selecting the
desired surface among all embeddings requires some control
over the principal curvatures of the surface. Several tech-
niques to partially control the principal curvatures of the thin
sheet have been proposed and implemented [5,7,15], yet
these techniques are system specific and depend strongly on
the elastic constitutive relations. In what follows, we only

address the universal problem associated with controlling
the two-dimensional Riemannian geometry. The desired
surface is an isometric embedding of the obtained solution;
however, other embeddings may exist. Selecting among
these will be addressed in the future.
Recent responsive 3D printing (often termed 4D) appli-

cations [5] and advances in programmable nematic elas-
tomer production [7] are aimed at producing a desired
surface upon actuation, and thus give rise to an inverse
problem: What is the planar director orientation field that
will result in a desired surface geometry upon actuation?
There have been several recent advances in addressing this
inverse problem. In Refs. [8,9,15] director fields are found
for surfaces of revolution while in Ref. [7] approximate
solutions are found numerically for arbitrary surface
geometries. In Refs. [17,18] the anisotropic deformation
was allowed to vary spatially, leading to a less constrained
inverse problem, to which possible solutions were pre-
sented. Alas, an exact solution to the full inverse problem
was not found in the general case, nor was it shown to exist.
In this Letter, we formulate this inverse design problem

as a set of partial differential equations (PDEs). We show
that the system is well posed and demonstrate director
fields that curve into arbitrary surfaces by integrating these
equations. We present an algorithm that when provided
with a desired geometry and appropriate initial conditions
integrates the sought director field (Fig. 1). This approach
allows us to explore the limits of director induced defor-
mations and characterize the set of director fields that
produce a desired geometry. Characterizing the collection
of solutions opens the door to optimization of the choice
of initial data with respect to desirable properties such as
maximizing coverage or minimizing distortions.
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To find the set of equations describing the inverse
problem, we first rephrase the recently solved forward
problem: What is the geometry assumed when a prescribed
director field is actuated.
The forward problem.—Consider an initially flat thin

sheet made of a uniform material characterized by a planar
director field n̂ ¼ ( cosðθÞ; sinðθÞ). Upon actuation, the
material shrinks by a factor λ along the director and
expands by a factor λ−ν along the perpendicular direction.
As shown in Refs. [15,16] the Gaussian curvature of the
actuated surface is

KA ¼ ðλ2ν − λ−2Þ×
�
cosð2θÞðð∂yθÞ2 − ð∂xθÞ2 þ ∂x∂yθÞ

þ sinð2θÞ
2

ð∂2
xθ − 4∂xθ∂yθ − ∂2

yθÞ
�
:

Solving the inverse problem amounts to finding a planar
director field θðx; yÞ that satisfies the above nonlinear
partial differential equation. This formidable problem is
further complicated as the Gaussian curvature is naturally
given on the curved surface and not in the Cartesian
coordinates ðx; yÞ.
Exploiting the natural coordinates and scalars that

characterize the director field [19] we next recast the
system in a form that allows explicit integration of the
inverse problem. In two dimensions one may always define
a parametrization rðu; vÞ such that u parametric curves
(along which v is constant) are everywhere tangent to the
director, whereas the v parametric lines are perpendicular to
the director,

∂ur ¼ αn̂; ∂vr ¼ βn̂⊥: ð1Þ

The metric of the flat sheet with respect to this parametriza-
tion is given by dl2 ¼ α2du2 þ β2dv2. Upon actuation, the
flat sheet shrinks and expands along n̂ and n̂⊥, respectively.
The arclength parameters thus change according to

αA ¼ λα; βA ¼ λ−νβ; ð2Þ

and the actuated metric remains diagonal and is given by
dl2A ¼ α2Adu

2 þ β2Adv
2.

A two-dimensional director field n̂ is fully characterized
by two local scalar fields [19]—its intrinsic bend b and
splay s, which are given by

b ¼ n̂⊥ · ðn̂ · ∇Þn̂; s ¼ n̂⊥ · ðn̂⊥ ·∇Þn̂: ð3Þ

Geometrically, the bend and splay represent gradients in n̂
along n̂ and across it, and correspond to the geodesic
curvatures of the u and v parametric curves, respectively.
They are thus related to the flat arclengths by

b ¼ −
∂vα

αβ
; s ¼ ∂uβ

αβ
: ð4Þ

Given the two-dimensional metric, one could express the
Gaussian curvature in terms of the splay, the bend, and their
directional derivatives. For the case where the director is
given in a planar domain this leads to

0 ¼ s2 þ 1

α
∂usþ b2 −

1

β
∂vb; ð5Þ

see Refs. [19,20]. Upon actuation the metric components
rescale according to Eq. (2) and the actuated Gaussian
curvature reads

FIG. 1. Integration of the director field. Left: Initialization. Given a surface with curvature K the initial condition consists of two
perpendicular curves that will become integral curves of the actuated director and its perpendicular. The corresponding unactuated
integral curves inherit the geodesic curvatures b ¼ λ−νκg1 and s ¼ λκg2, respectively, and we are free to set α ¼ 1 along the former and
β ¼ 1 along the latter. We next integrate to obtain β and s along the director integral curve completing the initialization of the SOE.
Right: Iterative integration step. (i) α; n̂; r, and b are integrated a dv step along n̂⊥ on the flat sheet. n̂A and rA are integrated a step dv
along n̂A⊥ on the desired curved surface. (ii) β and s are integrated along n̂ according to the Gaussian curvatureKM pulled back from the
desired surface. With the information at hand this step can now be reiterated.
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−KA ¼ λ−2
�
s2 þ 1

α
∂us

�
þ λ2ν

�
b2 −

1

β
∂vb

�
: ð6Þ

As the actuated geometry is fully described by KA this
completes the solution of the forward problem.
The inverse problem.—Given a curved surface M with

Gaussian curvature KM, we seek a flat director field n̂ that
upon actuation will assume the geometry of M, and, in
particular, KA ¼ KM.
Combining Eqs. (5) and (6) we find the propagation

equations for the bend b and splay s on the flat sheet along
n̂⊥ and n̂

1

β
∂vb ¼ b2 −

KM

λ−2 − λ2ν
;

1

α
∂us ¼ −s2 −

KM

λ−2 − λ2ν
: ð7Þ

The system of equations (SOE) comprised of Eqs. (1),
(3), (4), and (7) allows us to find a parametrization of a flat
sheet rðu; vÞ and a director field tangent to the u-parametric
curves n̂ ∝ ∂ur, such that when the flat sheet is actuated it
deforms into a surface with the desired curvature KM.
Not all systems of partial differential equations are

solvable. To allow a solution from initial data they must
satisfy integrability conditions. These estimate the pre-
dicted variation of the solution along closed paths, and
must vanish. The integrability conditions for Eq. (1), which
propagate r, are synonymous with Eqs. (3) and (4). The
integrability conditions for Eq. (3), which propagate n̂,
yield Eq. (5). The remaining differential relations, namely,
Eqs. (4) and (7), propagate information only along one
direction and thus cannot lead to contradictions in the
integrated value of the solutions.
In the particular and simple case where the desired

geometry is characterized by KM ¼ const, the SOE are
self-contained and can be integrated directly. This will
result in a planar director field n̂ that when actuated will
adopt the geometry of constant Gaussian curvature KM,
as can be seen in Figs. 2 and 3.
In contrast, when the desired geometry is characterized

by a spatially varying Gaussian curvature the SOE is not
self-contained, as solving Eqs. (7) requires knowledge
of the curvature KMðu; vÞ at position rA. This, in turn,
requires that we also know the embedding rAðu; vÞ. While
αA, βA, bA, and sA are algebraically related to their flat
counterparts through Eqs. (2) and (4), this does not hold
for the actuated director field n̂A and the exact embedding
rAðu; vÞ. To obtain the director n̂A and embedding rAðu; vÞ
one has to integrate the curved versions of Eqs. (3) and (1),
respectively.
This results in an integration scheme in which at every

step one solves α, β, b, s, n̂ and rðu; vÞ on the flat sheet, and
then uses this information to integrate n̂A and rA to obtain

KMðu; vÞ for the next integration step, as depicted in Fig. 1.
See Supplemental Material for more details [20].
Initial conditions.—Given a curved surface M, solving

the inverse problem amounts to finding a director field n̂
that satisfies the SOE with respect toM in a flat domainD.
To solve the Cauchy problem for the SOE, i.e., to find

initial conditions around which unique solutions exist, and
to characterize these solutions we first need to understand
the structure of the SOE. Equations (5) and (6) form a
hyperbolic set of equations for s and b. Bringing them to
their canonical form (7) identifies the characteristic lines
along which information propagates with the parametric
curves of u and v. Examining Eqs. (4) we find a similar
hyperbolic structure, and that the role of the parametric
curves as carriers of partial information is preserved also for
α and β. Initial data for α and b, the arclength and geodesic
curvature of u lines, are propagated along v lines, while
initial data for β and s, the arclength and geodesic curvature
of v lines, propagates along u lines. Once α, β, b, and s are
known, n̂ and r can be obtained by directly integrating
Eqs. (3) and (1), respectively. The structure of the SOE is

FIG. 2. Solutions of the SOE: Director curves on a flat sheet
and the shapes they take when actuated, found by integrating the
SOE. Left: Sphere with Gaussian curvature KM ¼ 1. Center:
Constant negative curvature, KM ¼ −1, body of rotation. Right:
Anisotropic Gaussian surface, with varying Gaussian curvature.

FIG. 3. Distinct director fields (bottom) deforming into the
same section of the unit sphere (top). The solutions are charac-
terized by the geodesic curvatures of the initial curves, the u
baseline (thick blue) with κg1 and the v baseline (dashed red) with
κg2, from which they are integrated.
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quasilinear and is reminiscent of the equations associated
with the embedding of hyperbolic surfaces in R3 [21,22].
This hyperbolic structure implies that prescribing α, β, b,

and s along a noncharacteristic curve γ ∈ D, as well as n̂
and r at some point along the curve, leads to a unique
solution in its vicinity [23]. Equivalent types of initial data
that could be used include prescribing n̂ and ∇⊥n̂ along γ,
or, alternatively, prescribing n̂ and b along the same curve.
A particularly convenient and geometrically transparent

choice for the system at hand is prescribing a Goursat initial
condition [24], in which the initial data are divided into
two components each given on a different line. Specifically
we pick two orthogonal curves in M, one of which we set
to be a u line (i.e., an integral curve of the director) and the
other a v line (an integral curve of the perpendicular to the
director). We next show how to integrate the SOE from
such initial conditions.
Integrating the inverse equation.—The solution is ini-

tialized by pulling back the two initial curves on the curved
surface M, onto the flat domain D by integrating Eqs. (1)
and (3) (Fig. 1, left). The bend and splay of the flat director
field in D are algebraically related to the actuated bend and
splay, which correspond to the geodesic curvature of the u
line and v line in M, respectively. The arclengths’ gauge
freedom is fixed by setting α to 1 on the u line, and β to 1 on
the v line. This completes the setting of the Goursat initial
condition—two perpendicular characteristic curves in D,
the u baseline along which we know α and b, and the v
baseline along which β and s are known. We finish the
initialization step by obtaining the values of β and s along
the u baseline through the integration of Eqs. (4) and (7).
Following the initialization, the SOE is integrated via a

reiterated two-step tango: Knowing r, n̂, rA, n̂A, α, β, s, b
on a u line allows us to integrate r, rA, n̂, n̂A, α, b one
integration step along v, creating the next u line. The
missing information for β and s does not propagate along v,
but can now be integrated from the v baseline along the
newly formed u line. The Gaussian curvature KM is
inherited through the embedding rAðu; vÞ. This two-step
iteration is repeated until either the curved surface M is
covered by actuated director curves (Fig. 4), or until one
reaches a singularity of the equations, where β ¼ 0 or
α ¼ 0, i.e., at a defect in the integrated director field.
Integration distance bounds.—One naturally wonders:

how far can the SOE be integrated with respect to a given
curved surface before encountering a singularity? To
examine this question we recast Eq. (7) into an ordinary
differential equation for β along a u line, and for α along a v
line:

∂2β

∂l2
����
v
þ KM

λ−2 − λ2ν
β ¼ 0;

∂2α

∂l2
����
u
−

KM

λ−2 − λ2ν
α ¼ 0;

where l is an arclength parameter along the respective
parametric curves. Considering a surface of positive

curvature KM ≥ K0 > 0, for some constant K0,
the evolution of β on the u characteristic is bound
from above by a harmonic oscillator with a frequency
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K0=ðλ−2 − λ2νÞ�

p
; thus it must arrive at a singular

value β ¼ 0 within a propagation distance x0 ≤ π=ω (for a
detailed analysis see Supplemental Material [20]). In con-
trast, α never develops a singularity in this scenario. Such
director fields thus have a finite horizon along n̂ but can be
continued indefinitely along n̂⊥. For example, the director
field can wrap around a sphere multiple times along n̂⊥,
while it can cover no more than half the sphere’s circum-
ference along n̂. For a surface of strictly negative curvature
KM ≤ −K0 < 0, the roles of n̂ and n̂⊥ interchange, and
defects appear within a distance π=ω along n̂⊥. This is a
manifestation of the “orthogonal duality” [16] by which a
uniform quarter rotation to the director field, n̂ → n̂⊥, leads
to a surface of opposite curvature, K → −K.
As shown above, certain geometries cannot be realized

by actuating a defect free director field. In other cases,
however, an encountered singularity may be pushed further
away by varying the initial curves’ geodesic curvature.
Introducing carefully chosen grain boundaries to the
director field could further extend the range of attainable
geometries. This is somewhat analogous to the “lines of
inflection” introduced in Ref. [25] to allow extending the
limits of isometric embeddings of a given hyperbolic
geometry. A grain boundary of a similar type in the
nematic director can be seen in the numerically obtained
field designed to actuate into the form of a face in Ref. [7];
see Ref. [20].
Discussion.—The hyperbolic system of differential

equations derived in this work allows us to establish the
existence of a solution to the inverse problem, at least
locally, and to explicitly show how to calculate it. For
clarity we have used a flat unactuated sheet, yet the scheme
holds for any unactuated geometry, see Ref. [20]. The
system of equations also predicts that near any calculated
solution exist infinitely many other different solutions—
distinct director fields that correspond to the same surface
geometry. These solutions are classified by the orthogonal

FIG. 4. Surface mimicking a human face. The director field is
found by integrating the SOE according to the iterative algorithm
depicted in Fig. 1.
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base curves on the desired surface (see Fig. 3 for examples).
Practically, this classification is given by a point and an
initial direction onM, as well as the geodesic curvatures of
the two base curves, bðu; 0Þ and sð0; vÞ. Should a global
solution to the inverse problem exist systematically explor-
ing the possible initial conditions will allow us to find it.
In the context of biological tissues, and in particular for

fiber reinforced hygromorphing tissue [1–4], the existence
of a continuum of director fields that all result in the
same geometry may imply that the realized director field
is optimal with respect to some biological function. Our
explicit classification of these isometric textures provides
a way to systematically explore this natural optimization
process and possibly identify the evolutionary forces
behind it.
Similarly, for manmade systems we may exploit the

freedom of the initial data to optimize with respect to a
desired outcome; solutions with limited bend and splay
might be easier to implement in the lab, while other
solutions might better suit a specific target shape on
account of their initial buckling, anisotropic elastic moduli,
or the extrinsic curvature fields that may be imprinted onto
them [7]. Moreover, one may prescribe not only the final
configuration but guide the path the system will evolve
through on its way to the final state. Implemented to the
growing variety of responsive materials actuated via a
director field—nematic elastomer [7], 4D-printed fiber
reinforced hydrogels [5], and baromorphing elastomeric
sheets [18]—the inverse design problem solved in this
work could pave the way to soft machines of unprecedented
accuracy, control, and capabilities.
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