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We propose a one-parameter variational ansatz to describe the tunneling-driven Abelian to non-Abelian
transition in bosonic ν ¼ 1=2þ 1=2 fractional quantum Hall bilayers. This ansatz, based on exact matrix
product states, captures the low-energy physics all along the transition and allows us to probe its
characteristic features. The transition is continuous, characterized by the decoupling of antisymmetric
degrees of freedom. We futhermore determine the tunneling strength above which non-Abelian statistics
should be observed experimentally. Finally, we propose to engineer the interlayer tunneling to create an
interface trapping a neutral chiral Majorana fermion. We microscopically characterize such an interface
using a slightly modified model wave function.
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Introduction.—Fractional quantum Hall (FQH) systems
are to date the most promising platform to investigate
phases of matter with intrinsic topological order [1–4].
Innovative experimental advances on heterostructural
design [5–8] rapidly promoted these new setups as highly
competitive for the study of strongly correlated quantum
phases [9,10]. At the same time, new layer-sensitive
spectroscopic techniques are developed in wide and double
quantum wells [11,12], which allowed us to probe the long
discussed condensation of excitons [13]. The inner (valley
or layer) degree of freedom (d.o.f.) in these systems offers
additional tunable parameters [14,15] and enriches the
phase diagram [16–18]. This revives the interest in engi-
neering non-Abelian topological phases from coupling
internal d.o.f. of multicomponent FQH systems [19–23],
which are initially prepared in a well controlled Abelian
state [24,25].
Theoretically, the simplest construction of such an

Abelian to non-Abelian transition starts with an Halperin
220 state [26] at a total filling fraction ν ¼ 1. It describes
two decoupled copies of the bosonic Laughlin 1=2 wave
function (WF) [2,24]. Symmetrization of the two copies
[27–30] leads to the non-Abelian bosonic Pfaffian state
[31]. Symmetry gauging arguments [32–34] have shown
that this procedure not only relates the two WFs, but it also
produces the full non-Abelian Pfaffian topological order [4]
from the Abelian Halperin one [35]. It was argued [21] that
interlayer tunneling could physically drive such a symmet-
rization of the low energy d.o.f. This statement was put
on firmer ground by considering the effect of tunneling on
the one-dimensional effective theory at the edge of the
system [36,37], while numerical studies have repeatedly
confirmed that the tunneling-driven Abelian to non-Abelian

transition occurs at a microscopic level in bilayer FQH
systems [15,38–44].
Model WFs have widely contributed to our understand-

ing of correlated phases of quantummatter such as the BCS
ansatz [45–47] and FQH model states [2,24–26,31]. Their
physical relevance were soon corroborated by the finding
of Hamiltonians for which they are the exact ground state:
the Bogoliubov approach to superconductivity [48,49] and
model N-body interactions for the FQHE [50–52].
Although the interactions stabilizing the FQH model states
are not realistic [53], the corresponding ground state WFs
nonetheless capture the universal features of the phase such
as quasiparticle charge and braiding statistics in the bulk and
quasihole exponents on the gapless edge. The connection
between FQH phases and the underlying topological order
was considerably substantiated by Moore and Read in
Ref. [31]. They identified a large class of model WFs and
their quasihole excitations with conformal field theory (CFT)
correlators from which the topological content of the phase
may be read off (under the generalized screening assumption
[54]). It furthermore allows for an exact matrix product state
(MPS) description of these strongly correlated phases of
matter [55–57], allowing for large scale numerical study of
their relevance and properties [58,59].
In this Letter, we propose a variational ansatz based on

the CFT description in order to fully capture the low energy
physics of a bosonic FQH bilayer with arbitrary interlayer
tunneling. The MPS description allows us to observe a
continuous phase transition driven by the decoupling of
antisymmetric d.o.f. We also determine the precise range
of tunneling where a non-Abelian order fully develops.
Microscopic model.—We study a two-component

bosonic system at total filling ν ¼ 1 in the FQH regime.
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Bosons populate the lowest band assumed to be a Chern
band with C ¼ 1 [60], nearly flat and separated from the
other ones by a large gap. For simplicity, we focus on the
continuum limit where a large uniform magnetic field
(possibly artificial [61,62]) produces exactly flat Landau
levels. Temperature and interaction strength are supposed
to be small enough to avoid a Landau level mixing,
allowing projection onto the lowest Landau level (LLL).
The layer d.o.f. forms a pseudo spin-1=2 with z compo-
nents σ ∈ f↑;↓g. Although we will use the vocabulary of
bilayer systems, our discussion extends to any other type of
two-dimensional internal d.o.f. such as spin, hyperfine
states of an atom, and so on. As kinetic energy is frozen,
the interactions projected to the LLL dominate and produce
strong correlations between particles. We assume density-
density interactions within each layer to be

Hint ¼ J
Z

d2z
X

σ∈f↑;↓g
∶ρσðzÞρσðzÞ∶; ð1Þ

where we have defined ρσðzÞ as the LLL projected density
in layer σ at position z. The interaction strength J is set such
that the two-body problem only has eigenvalues zero and
one on the infinite cylinder. The densest ground state of
Eq. (1) is the Halperin 220 state [50,63]. It has a fourfold
topological degeneracy on the torus, corresponding to the
four anyons of the underlying Abelian topological order
[35]. Under the global layer permutation Pz (swapping ↑
and ↓), which commutes with Hint, three of them are even
while the last one is odd [64]. Coupling of the two layers is
achieved by introducing tunneling as Htun ¼ −tSx. It acts
as a Zeeman term coupling to the x components of the total
spin S and splits the Halperin 220 ground state manifold
into even and odd sectors. With increasing tunneling
strengths, the odd-parity state crosses the gap and ulti-
mately merges into the many-body spectrum continuum
[38]. The remaining threefold ground state degeneracy is a
signal of the non-Abelian Pfaffian topological order [31],
which we can understand as follows. Tunneling splits the
LLL into two subbands, gathering, respectively, single-
particle WFs with layer index in the two pseudospin x
eigenstates, which we denote as even e ¼ ð↑þ ↓Þ= ffiffiffi

2
p

and
odd o ¼ ð↑ − ↓Þ= ffiffiffi

2
p

. At a large tunneling t ≫ 1, the
system behaves as an effective single-component FQH
system fully polarized in e, due to the large subband
Zeeman gap, with delta interactions. We rely on numerical
studies to certify that its ground state is well approximated
by the non-Abelian Pfaffian state [40,64].
Model state.—Motivated by the solution of a specific

model of spin-triplet pairing in p-wave superconductors
displaying a similar tunneling-driven Abelian to non-
Abelian transition [21,30,65–68], we propose the following
one-parameter ansatz for the low energy theory of
Hint þHtun:

jΨθ⟫ ¼ h0jOBkg exp

�Z
d2z½cos θVeðzÞ ⊗ c†eðzÞ

þ sin θVoðzÞ ⊗ c†oðzÞ�
�
j0i ⊗ jΩ⟫;

θ ∈ ½0; π=4�: ð2Þ

Here, c†e=oðzÞ creates a boson in the spin component e=o at
position z above the Fock vacuum jΩ⟫. j0i is the CFT
vacuum state. The CFT uses two chiral bosonic field ϕs and
ϕc [69] to encode the spin and charge the d.o.f. that
decouple on the edge of the system [70,71]. ϕc carries a
U(1) charge associated with particle number. The neutral-
izing background charge OBkg fixes the overall number of
particles and reproduces the Gaussian factors of the LLL
[31,72]. Spin excitations are described by a Dirac fermion
Ψ† ≕ eiϕ

s∶ [29,36]. Its real and imaginary parts are related
to the spin in the x direction. The operators associated with
the bosonic creation operators in Eq. (2) are

Ve ≕ cosðϕsÞeiϕc∶; Vo ¼ i∶ sinðϕsÞeiϕc∶: ð3Þ

Our ansatz smoothly interpolates between the Pfaffian and
the Halperin 220 state, which are exactly reproduced,
respectively, for θ ¼ 0 and θ ¼ π=4 [30]. As θ goes to
zero, the total spin of the variational ansatz polarizes in the
e component, which drives the transition discussed above.
Being written as a CFT correlator, our ansatz can be

brought to an MPS form. All numerical calculations are
performed on a cylinder of perimeter L (measured in units
of magnetic length lB), the efficient geometry for the FQH
MPS formulation [56,73,74]. We first computed the over-
lap between the ED ground state of lowest momentum for
several tunneling strength t. The best variational parameter
θmax
ED ðtÞ is depicted in Fig. 1. Since both the Halperin 220
and the Pfaffian states belong to the optimization set, it is
not surprising that our ansatz performs better than these two
model states (also displayed in Fig. 1). However in the
transition region where they both fail to capture the low
energy physics, our ansatz remains a very good approxi-
mation of the ground state. Hence, the theoretical ingre-
dients used to build Eq. (2) seem to faithfully account for
the low energy physics of the model for any tunneling. To
confirm that these high overlaps are not merely the artifacts
of the optimization procedure, we can fix the variational
parameter independently by minimizing the energy per
orbital on an infinite cylinder. We developed a method to
evaluate the interaction EðθÞ ¼ ⟪ΨθjHintjΨθ⟫ and tunnel-
ing TðθÞ ¼ ⟪ΨθjHtunjΨθ⟫ energies that bypasses the use of
matrix product operators [30]. In essence, we have adapted
known results about continuous MPS [75] to our ansatz
jΨθ⟫, seeing it as a Hamiltonian time evolution of a 1D
CFT [72]. The energy minimization procedure fixes
the variational parameter θmax

iMPSðtÞ, as depicted in Fig. 1.
We find an excellent agreement between the numerically
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extracted θmax
iMPSðtÞ and our previous finite size results

θmax
ED ðtÞ. This provides another stringent test of the physical
relevance of our ansatz.
Continuous transition.—To be immune to local pertur-

bations and exhibit topological order, a system should be
gapped (or screened in the FQH language); i.e., correlation
function of local observables must decay exponentially
with distance. In the MPS formalism, a local excitation
such as ceðzÞjΨθ⟫ is translated into the insertion of Ve [see
Eq. (2)] which couples to an excited state of the transfer
matrix. The correlation length governing the decay of
⟪Ψθjc†eðzÞceðwÞjΨθ⟫ is then related to the corresponding
eigenvalue of the transfer matrix [58,76]. While bulk
excitations generically couple to the first excited state of
the transfer matrix, the Pz symmetry, which translates into
ϕs → −ϕs in the CFT, imposes further selection rules.
Symmetric (respectfully, antisymmetric) excitations under
layer inversion couple to even (respectfully, odd) excited
state under Pz. We extracted the corresponding even ξeloc
and odd ξoloc correlation lengths as a function of θ, as shown
in Fig. 2. The correlation length ξeloc is finite for all θ and
smoothly interpolates between the values of Refs. [58,77]
for the Halperin 220 and the one-component bosonic
Pfaffian states. We observe that antisymmetric excitations
are not equally well screened and that ξoloc diverges when θ
goes to zero. We relate these features to the depletion of the
o band. Notice indeed that Vo insertions in Eq. (2) are only
screened by o electrons with which they have nontrivial
fusion rules. Linear response theory predicts that ξoloc is

inversely proportional to νo when the filling factor of the o
band goes to zero. We find that this law accurately accounts
for the computed ξoloc, as depicted in Fig. 2. We shall now
argue that this critical behavior at small θ remains unno-
ticed. Take θ ¼ 0, the system has no o particles [see
Eq. (2)] and only couples to the symmetric part of local
observables, for instance:

⟪Ψ0jc†↑ðzÞc↑ðwÞjΨ0⟫ ¼ ⟪Ψ0jc†eðzÞceðwÞjΨ0⟫: ð4Þ

This creates some redundancies in the MPS description
since the antisymmetric part of the ϕs field is conserved.
The corresponding d.o.f. on the MPS boundary condition
lead to exact degeneracies in the transfer matrix spectrum
and explain the divergence of ξoloc at θ ¼ 0. Note however
that all these different MPS boundary conditions are
completely transparent to the e particles and produce the
same physical state. For θ ≲ π=20, the bands are only
weakly coupled, as shown in Fig. 2. The system is almost
polarized νo ≪ νe and exhibit a clear scale separation
ξeloc ≪ ξoloc. The previous degeneracies are slightly lifted
and excitations in the empty o band form a gapless branch
above the ground state. However, o d.o.f. only become
noticeable at very large scales ∼ξoloc. For instance, the first
correction to Eq. (4) is of order

ffiffiffiffiffi
νo

p
e−jz−wj=ξ

o
loc, small in

magnitude unless the even excitation is fully screened. Low
νo population makes these excitations transparent on the
scale over which the correlation builds up in the e band,
such that the ground state properties are locally that of the

FIG. 1. Comparison of our ansatz with the lowest momentum
ED ground state on a cylinder of perimeter L ¼ 8lB. Main: The
variational parameter θmax

ED ðtÞ maximizing the overlap for N ¼ 12
and N ¼ 14 particles as a function of tunneling (diamonds). It
agrees extremely well with θmax

iMPSðtÞ determined independently by
energy minimization on an infinite cylinder (dashed line). Inset:
Best overlap with our variational ansatz (blue) for two system
sizes as a function of the tunneling strength t. For comparison, the
overlap with the Pfaffian (red) and Halperin 220 (green) states are
also provided together with the best overlap in the vector space
that they generate (gray).

FIG. 2. Main: Inverse of the even and odd correlation lengths as
a function of the variational parameter. The even correlation
length ξeloc remains finite and interpolates between the Halperin
220 ξ220 and Pfaffian ξPf values. The odd correlation length,
computed in the twisted and untwisted sectors (see below),
diverges as lB=ξoloc∝ νo when θ→0 (see text). For 4θ=π>0.7,
a level crossing in the spectrum prevents us to follow the
corresponding transfer matrix eigenstate. Inset: Filling fraction
νo in blue (respectfully, νe in orange) of the odd (respectfully,
even) LLL band of Eq. (2).
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θ ¼ 0 point. Similar behaviors are observed for anyon-
anyon correlation functions [30,78,79].
Non-Abelian properties.—At θ ¼ 0, we saw that the odd

excitations decouple from the low-energy d.o.f. of the
system. Splitting the Halperin 220 anyonic excitations into
even and odd parts under Pz, we are left with two
deconfined anyons ψ and σ≕ cos ðϕs=2Þeði=2Þϕc∶ obeying
the fusion rules:

ψ × ψ ¼ 1; ψ × σ ¼ σ; σ × σ ¼ 1þ ψ : ð5Þ

They define an SUð2Þ2 algebra [80], which characterizes
the Pfaffian topological order [31]. The previous discussion
about the correlation lengths establishes that the same non-
Abelian theory extends above this special point, here for
θ ≲ π=20. The Pfaffian physics can be probed by braiding
anyons kept by a few ξeloc apart and the observed separation
of scale ensures that odd contributions do not spoil the
results. Going from the Halperin 220 order to Eq. (5) can be
interpreted as gauging the symmetry Pz [33,81], which is
indeed locally satisfied when the system is fully polarized
in e, followed by the deconfinement of the symmetry
defects [34], which we couldn’t probe directly though we
believe it to be related to the ξoloc divergence. Restoring the
Abelian order from Eq. (5) can be viewed as a condensing
of the boson i∂ϕs [32].
To test the non-Abelian character at small θ and put

bound on the Pfaffian regime in the phase diagram, we
evaluated the constant correction to the entanglement area
law, the topological entanglement entropy (TEE) [82,83],
which is known to characterize the topological order. We
rely on the ansatz structure [30] to computed the real-space
entanglement entropy SðθÞ of Eq. (2) in all sectors, for a cut
preserving the cylinder rotational symmetry [84–86]. The
TEE is then extracted by finite difference with respect to the

cylinder perimeter, as in Refs. [57,87,88]. The numerical
results for one twisted and one untwisted sector are
depicted in Fig. 3. Identical results were found for both
members of the (un)twisted pair, which are related by a
center of mass translation corresponding to a shift of the
U(1) charge at the MPS boundary. When θ ≃ π=4, all four
sectors have the same TEE γ ≃ 2 log

ffiffiffi
2

p
matching the

prediction for the Abelian Halperin 220 topological order
[35,89]. For θ ≲ π=20, we find γI ¼ γψ ≃ log

ffiffiffi
4

p
in the

untwisted sectors, and γσ ≃ log
ffiffiffi
2

p
in the twisted sector.

The different sectors having distinct TEE is an indication of
the non-Abelian nature of the phase. The extracted TEEs
agree with the quantum dimensions of the I, ψ , and σ
anyons [80]. These results bolster the physical picture
depicted above. They also provide a quantitative range θ
and hence in t over which the system exhibit a true Abelian
(θ ∈ ½π=5; π=4�, t ∈ ½0; 0.2162ð1Þ�) or non-Abelian
(θ ∈ ½0; π=20�, t ∈ ½2.74ð7Þ;∞�) order.
Trapping a Majorana fermion.—It is argued that a one-

dimensional neutral chiral Majorana fermion is trapped at
the interface between a Halperin 220 phase and a Pfaffian
phase [37,80]. Our study provides a simple protocol to
realize such a setup microscopically, varying the tunneling
parameter spatially. Let tðxÞ vary smoothly along the
cylinder axis such that the Halperin 220 and Pfaffian
phases are stabilized on either sides of the interface, where
the interaction Eq. (1) mixes their counterpropagating edge
modes. Assuming that all interface d.o.f. present on both
sides gap out [37,80], only the antisymmetric edge exci-
tations remain. They are described by a chiral Majorana
fermion ψ I , the imaginary part of Ψ.

FIG. 3. Extraction of the TEE at L ¼ 10lB in the twisted and
untwisted sectors using the method of Ref. [77]. Dotted lines
indicate theoretical predictions and gray shaded areas around
them represent a 5% deviation. While we are still off these
predictions by a few percents in the Halperin 220 and Pfaffian
phases, increasing the MPS bond dimension measured by Pmax
[30] brings our results closer to the expected values.

FIG. 4. Top: Total density integrated over the cylinder perim-
eter across the interface. It is featureless, but for small ripples that
are certainly due to the sharpness of our interface ansatz (see
Refs. [87,88]). We checked that no charge accumulates at the
interface, even for excitations of ψ I , showing that the interface
effective theory is neutral. Bottom: Extracted TEE in the twisted
and untwisted sectors at different position across the interface.
We recover the values characterizing the Pfaffian and Halperin
220 phases away from the interface jxj ≫ lB, showing the
relevance of the interface MPS WF.
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We can numerically probe such an interface between
distinct topological orders within the MPS formalism as
first described in Refs. [87,88]. A model WF describing a
sharp interface at x ¼ 0 is built by using the Halperin
(respectfully, Pfaffian) MPS matrices for LLL orbitals
centered at x > 0 (respectfully, x < 0). This interface
model WF was shown to capture all universal as well as
some microscopic features of the interface [87,88]. We first
extract the TEE γðxÞ at a different position x, the results are
depicted in Fig. 4(bottom). Deep in the two phases, we
retrieve the expected TEE for the Halperin 220 and Pfaffian
phases, which proves that our interface model WF indeed
interpolates between the two topological orders. Next, we
observe that, besides small ripples, the density is com-
pletely featureless across the interface [see Fig. 4(top)]. We
checked this to also be true for excited state of ψ I , which
shows that the interface edge mode is neutral. To further
characterize the interface low-energy effective theory, we
extracted its chiral anomaly (or central charge) c following
the methods developed in Refs. [87,88]. We find that
c ≃ 1=2 [30], for which the only unitary minimal model
is that of a free Majorana fermion [69,90].
Conclusion.—In this Letter, we extended the CFT

approach to bulk FQH WFs to describe a continuous
phase transition between distinct topological orders.
Besides the two fixed points on either sides of the
transition, it accurately describes the low-energy physics
of FQH bosonic bilayers at arbitrary tunneling. We used it
to observe the characteristic features of the Abelian to non-
Abelian transition and could put bounds on each domains.
Finally, we showed that a neutral Majorana fermion could
be trapped at an interface engineered by spatially varying
the tunneling strength.
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