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We theoretically study Rydberg excitons in one-dimensional chains of traps in Cu2O coupled via the van
der Waals interaction. The triplet of optically active p-shell states acts as an effective spin 1, and the
interactions between the excitons are strongly spin dependent. We predict that the system has the
topological Haldane phase with the diluted antiferromagnetic order, long-range string correlations, and
finite excitation gap. We also analyze the effect of the trap geometry and interactions anisotropy on the
Rydberg exciton spin states and demonstrate that a rich spin phase diagram can be realized showing high
tunability of the Rydberg exciton platform.
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Introduction.—Rydberg states of matter draw a lot of
interest nowadays. Strongly excited atoms are macroscopic
quantum objects highly susceptible to external fields that
serve for benchtop studies of quantum effects at a large
scale [1]. Enhanced polarizability of Rydberg atoms results
in efficient interactions, making them a platform of choice
for quantum simulations [2–4].
An exciton, the Coulomb interaction correlated electron-

hole pair, emerges in semiconductors when an electron is
optically promoted from the filled valence to an empty
conduction band. It is a direct analog of the hydrogen atom
[5]. The perfection of the natural cuprous oxide crystals has
not only made it possible to discover large-radius excitons in
semiconductors [6], but has also lead to a recent break-
through: the demonstration of stable highly excited excitonic
Rydberg states with the principal quantum number n up
to 25 [7]. Importantly, the spatial extension of the
n ¼ 25 exciton in Cu2O reaches 1 μm bridging nanoscale
and microscale physics in a semiconductor environment.
In contrast with Rydberg atoms, excitons exist in the
crystalline environment, which manifests itself not only in
quantitative differences of the binding energy and exciton
radii, but also in different selection rules for optical tran-
sitions [8–10] making p-shell excitons with the orbital
angular momentum 1 active in single-photon processes,
unusual fine structure of the energy spectrum [11], as well as
broken symmetries [12,13]. All this provides flexibility to
control the excitonic states by light.
Even more profound consequences of the nonzero orbital

angular momentum are expected in exciton-exciton inter-
actions in cuprous oxide [14]. Just like for atoms, the
interactions are of paramount importance for Rydberg
excitons [7] owing to their large radii. By now, the
interactions are scarcely studied. However, according to
the recent theoretical predictions [14], the coupling
between the excitonic states crucially depends on the
mutual orientations of their angular momenta.

Similarly to atomic physics, the interaction effects are
expected to be the strongest in ensembles of localized
Rydberg excitons. Here, we demonstrate that even in a
one-dimensional chain of trapped Rydberg excitons in Cu2O
the ground state corresponds to a topologically nontrivial
spin order—the Haldane phase [15]—with diluted antifer-
romagnetic order and a gapped spectrum of elementary
excitations. Such a topological phase is inherent to integer
spin, in particular spin-1, chains with antiferromagnetic
coupling. The hallmarks of the Haldane phase are the
nontrivial edge states behaving akin to spin-1=2 fermions
as well as the presence of the hidden long-range “string”
order despite the apparent lack of distant spin-spin
correlations [16].
The concepts of topology are at the heart of modern

condensed matter and high-energy physics as topologically
nontrivial properties are largely unaffected by external
perturbations and depend on the fundamental properties
of system’s Hamiltonian. For example, the protection
of edge states in the quantum Hall effect regime [17–20]
and in topological insulators allows one to realize low-
dissipation electron transport [21] and the spin-edge states
in Haldane chains are promising for quantum technologies
[22]. The quest for topologically nontrivial phases of matter
is also going on mainly due to the shortage of experimental
test systems. For example, despite numerous theoretical
proposals [23], so far the Haldane phase has been only
probed by the neutron scattering [24] or heat conductivity
measurements [25,26] in anisotropic magnetic materials.
The topological effects are now being studied for non-
interacting [27–30] and interacting exciton polaritons
[31,32]. However, this research is fundamentally different,
being focused on the topological edge excitations and
solitons in the driven-dissipative condensate, rather than on
a many-body exciton ground state with a topologically
nontrivial spin structure we propose here.
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Thus, the Rydberg excitons provide a highly desirable
tabletop solid state platform with direct optical access to
individual excitons for both fundamental studies of hidden
symmetries and topological orders and prospective quan-
tum simulations [23,33–37].
Chain of Rydberg excitons.—We consider Rydberg

excitons confined in a one-dimensional (1D) periodic array
of traps, see Fig. 1. The traps for excitons could be created
either optically utilizing the ac Stark shift of excitons in the
structured light waves, similar to the optical lattices of cold
atoms [38], or in a tailored semiconductor environment,
where the band gap energy can be controlled by applying a
strain or external electrostatic potential [39]. It is assumed
that each trap is occupied by a single exciton, that is in a
p-shell state with the angular momentum of the envelope
function being equal to 1. For simplicity, we neglect here
exciton internal spin degrees of freedom, i.e., the spins of
electrons and holes, and the spin-orbit interaction. We
introduce the pseudovector angular momentum operator
Sj ¼ ðSxj ; Syj ; SzjÞ for jth trap. Hereafter, we use the term
spin to denote Sj for brevity, and z is the chain axis. We
assume that the traps are sufficiently well separated; thus
the excitons in neighboring traps are coupled to each other
by the van der Waals interaction only. The effects of the
exchange interaction require an overlap of excitonic wave
functions and can be neglected in the considered chain under
the conditions an ≪ d ≪ R, where an is the radius of the
excited exciton state and d is the trap size [40–42]. In this
situation the interaction Hamiltonian is also independent of
the trap size and geometry in the leading order in d=R ≪ 1.
Owing to a strong R−6 decay of the potential with the
distance between the traps R, it is sufficient to consider
the nearest-neighbor approximation. The Hamiltonian of the
chain has the form H ¼ P

N−1
j¼1 HbondðSj; Sjþ1Þ, where N is

the number of traps equal to the number of excitons in the
system, Hbond is the neighbors’ coupling Hamiltonian. The
system has a rotational symmetry around the z axis. Thus,
Hbond is characterized by seven real constants [43] c0;…; c6
and can be presented as

HbondðS1; S2Þ ¼ c0 þ c1S
z
1S

z
2 þ c2ðSx1Sx2 þ Sy1S

y
2Þ

þ c3ðSz1Sz2Þ2 þ c4ðSx1Sx2 þ Sy1S
y
2Þ2

þ c5½Sz1Sz2ðSx1Sx2 þ Sy1S
y
2Þ þ H:c:�

þ c6ðSx1Sy2 − Sy1S
x
2Þ2: ð1Þ

The microscopic calculation in Ref. [14] confirms that all
seven parameters are significant. Specifically, for the exciton
with principal quantum numbers n ¼ 12;…; 25 one has [14]

c0¼−5.58E; c1¼ 9.53E; c2¼−8.97E; c3¼ 1.27E;

c4¼ 6.59E; c5¼−3.18E; c6¼ 5.04E; ð2Þ

where the common factor E is 10−4n11 ℏ s−1 × μm6=R6.
The Hamiltonian is invariant to the change of parameters
c2 → −c2, c5 → −c5 which corresponds to reflection
z → −z for every second spin. Importantly, the spin-spin
coupling is mainly antiferromagnetic (c1 > 0) and strongly
anisotropic. For the exciton separation on the order of a
micrometer and the principal quantum number n ∼ 20 the
typical energy scales are in the 10 μeV range making it
feasible to observe the many-body phases at the mK
temperatures; see Supplemental Material [44] for details.
Since the Rydberg blockade prevents two particles from

being close to each other [1,2,7], in what follows we neglect
the exciton tunneling between the traps and disregard the
polariton effect [54]. The interplay of the interactions and
tunneling can enrich the spin phases in bosonic systems [55].
The trap, however, can affect the angular momentum state of
the exciton giving rise to the anisotropic single particle
contributions [44]. We first disregard the anisotropy and
discuss its effect at the end of the Letter.
Ground and excited state energies.—The chain

Hamiltonian cannot be diagonalized analytically for
N > 3. Instead, we first solved numerically for the lowest
energy states in small finite chains (N ≤ 14) with the
periodic boundary conditions [56]. The results of calculation
are shown in Fig. 2. The ground state energy, shown in the
inset, quickly converges to the value of E0 ≈ −3.51NE. The
ground state is nondegenerate for periodic boundary con-
ditions and has the total spin

P
j S

z
j ¼ 0. The system is

gapped, with the excitation gap slowly decreasing with the
size. The lowest excited state has zero total spin projection
and the excitation energy Eg ≳ 1.1E (red open symbols in
Fig. 2). The states with

P
j S

z
j ¼ �1 have significantly

larger excitation energies E0
g ≳ 6E (blue filled symbols). In

order to reveal the structure of the excited states we have
compared the results of exact diagonalization with those
obtained from the single-magnon variational approach
[57,58]. Namely, we used the trial wave function

ψk ∝
1
ffiffiffiffi
N

p
XN

j¼1

eikjSzjψ0; ð3Þ

for the first excited state, where ψ0 is the numerically
calculated ground state, and the wave vector has been set to
k ¼ π [44]. The variational energy is close to the exact one,
which indicates that the excited state is well described by the
ansatz equation (3). The large overlap (about 0.99) between
Eq. (3) and the lowest excited state has been also confirmed

FIG. 1. Schematics of the diluted antiferromagnetic state
formed from p-shell Rydberg excitons in an array of traps.
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numerically. The lowest excited states with the�1 total spin
projection being degenerate due to the time-reversal sym-
metry were sought in the form

ψk ∝
1
ffiffiffiffi
N

p
XN

j¼1

eikj½μ1Szj þ μ2S
z
jðSxj � iSyjÞ�ψ0; ð4Þ

with k ¼ 0 [44] and μ1;2 being the variational coefficients.
The energy of this trial state is close to the exact numerical
result as well, cf. blue circles and diamonds in Fig. 2.
In addition to the exact diagonalization of small

finite chains we have also employed the infinite time-
evolving block decimation (ITEBD) approach [59–61].
The advantage of this numerical technique is that it is
capable to directly address infinite chains. It is based on the
representation of the ground state ψ0 in the matrix-product
form [62]

ψ i1i2i3… ∝ Mi1
α1α2M

i2
α2α3M

i3
α3α4…; ð5Þ

where M is a certain third rank tensor, indices ij ¼ 0, þ1,
−1 label the projections of the spin j, and αj ¼ 1;…; χ
are auxiliary indices. If the spins were independent, one
could use χ ¼ 1, so that the α indices are irrelevant,
Mi

αjαjþ1
→ Mi and the state Eq. (5) would reduce to a

simple product state. For χ > 1 the state Eq. (5) can
describe quantum entanglement (i.e., correlations) between
the spins. The ITEBD approach enables high-accuracy
description of arbitrary gapped noncritical 1D systems with
local Hamiltonians [62,63] at relatively low computational
cost. In our case, the convergence of energy better than 1%
has been already reached for the rank χ ≲ 20.
The ITEBD results for the infinite system are shown in

Fig. 2 by dashed horizontal lines. The energies of both
ground and excited states agree well with the corresponding
results for the finite chains. The excited state energies in the
infinite system were estimated using the same variational
approximation Eqs. (3) and (4) with ψ0 being now the
ground state found from ITEBD. We have also calculated
the dispersion of excitations EgðkÞ in the single magnon
approximation [44]. In agreement with the analysis of the
finite system, the spin-0 magnon branch is indeed gapped
with the minimum at the edge of the Brillouin zone, k ¼ π,
while the magnons with �1 spin projection have the
minimum energy at k ¼ 0.
Spin structure of the ground state.—Now we proceed to

the analysis of the spin-spin correlations in the ground state.
The calculation has been performed for the infinite chain
using the ITEBD technique. The results are shown in Fig. 3.
We start with the analysis of the pair spin-spin correlations
depending on the spin-spin distance j. The calculation
demonstrates the presence of short-range antiferromagnetic
Néel order,

CNéelðjÞ≡ ð−1ÞjhSz0Szji: ð6Þ

At large distances the spin correlations Eq. (6) vanish, as
illustrated by the red dashed curve in Fig. 3 showing the
exponential decay with the correlation length ≈7. Hence,
based only on the analysis of local spin-spin correlations
one could conclude that the considered spin phase has no

FIG. 2. Ground and excited state energies in spin chains of
different lengths with the periodic boundary conditions. Open
symbols correspond to the lowest excited state with the total spin
projection

P
Szj ¼ 0, filled symbols correspond to the double-

degenerate states with
P

Szj ¼ �1. Squares indicate results of
direct numerical calculation, diamonds correspond to the energies
of the variational states Eqs. (3) and (4) with k ¼ π and 0,
respectively. Dashed lines are the variational results obtained for
the infinite system. The inset shows the ground state energy per
bond, E0=ðNEÞ, for the finite chain (symbols) and the infinite
chain (dashed line).

FIG. 3. Spin-spin correlator ð−1ÞjCNéelðjÞ and string correlator
for ground state of the infinite chain of Rydberg excitons,
Eqs. (6) and (7).
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long-range order. However, this is not the case. Our main
result is that the infinite chains of Rydberg excitons do
possess a long-range string order, characterized by the
nonvanishing correlator [16]

CstringðjÞ ¼ hSz0eiπðS
z
1
þSz

2
þ…Szj−1ÞSzji; ð7Þ

blue circles in Fig. 3. The presence of the nonlocal order
parameter CstringðjÞ can be interpreted as a result of
spontaneous breaking of a certain Z2 × Z2 symmetry,
hidden in the system [64]. Such string order in the absence
of Néel order has been first revealed in the Affleck-
Kennedy-Lieb-Tasaki model with Hbond ¼ S1 · S2 þ ðS1 ·
S2Þ2=3 [65,66]. The Affleck-Kennedy-Lieb-Tasaki model
is exactly solvable by the matrix-product state Eq. (5) with
certain rank-2 matrices [64]. Similar ansatz has allowed us
to obtain the ground state energy with E0 ¼ −3.49NE [44]
analytically, which is very close to the numerically obtained
value of E0 ¼ −3.51NE shown in the inset of Fig. 2. The
simultaneous presence of the string order and the absence
of the Néel order, along with the presence of the non-
degenerate gapped ground state are the clear fingerprints of
the Haldane phase of spin-1 excitons [15,67]. Physically,
this indicates so-called diluted antiferromagnetism where
the wave function of the ground state ψ0 can be represented
as a superposition of basic functions in the form

j…; 0…; 0; 1;−1; 0;…; 1;−1; 1; 0;…i;

where the significant part of excitons is in the Sz ¼ 0 state,
and the spins Sz ¼ �1 can occur only in pairs, i.e., þ1, −1
or −1, þ1, while the pairs þ1, þ1 or −1, −1 are forbidden.
Thus, the string correlator singles out “diluted antiferro-
magnetic order,” where neighboring spins are always
opposite with the possible arbitrary number of zeros in
between. The fact that the pair þ1, −1 or −1, þ1 can occur
at any arbitrary place of the chain is related to the formation
of the topological Haldane phase in our system. Such a
diluted antiferromagnetic state is schematically illustrated
in Fig. 1. Experimentally, spin states and spin correlations
can be measured by the polarization of light emitted by
the excitons.
The smoking gun evidence for the Haldane phase is the

presence of edge states in a finite chain with open boundary
conditions behaving as spin-1=2 fermions [16,34]. Our
direct numerical calculations for N ≤ 14 exciton chains
have indeed confirmed that, in the case of open boundary
conditions, the ground state corresponds to four closely
lying levels corresponding to the combinations of edge
spins-1=2 slightly split due to the finite chain size [44].
Phase diagram.—The Haldane phase is a robust

generic feature of 1D spin-1 chains with antiferromagnetic
nearest-neighbor interaction. For instance, it is known to
exist in isotropic bilinear-biquadratic spin chains with
Hbond ¼ − cos θS1 · S2 þ sin θðS1 · S2Þ2 in a wide range

of angles around θ ¼ π, including the spin-1 anisotropic
Heisenberg model [68]. In order to demonstrate that the
formation of the Haldane phase for the Rydberg excitons is
not a coincidence, we have analyzed the structure of the
ground state depending on the anisotropy of the trap shape
and on the sign of the coupling, either ferromagnetic or
antiferromagnetic. The trap anisotropy has been described
by adding the single particle termsH1¼D

P
j½ðSzjÞ2−2=3�

to the Hamiltonian [44]. The coupling anisotropy was
described by an additional term δc1S

z
1S

z
2 in the bond

Hamiltonian equation (1). The structure of the ground state
was determined by the comparison of the spin-spin and
string correlations at large distances. The results of this
analysis are summarized in Fig. 4, and the correlation
functions are given in the Supplemental Material [44].
We start the discussion of the phase diagram Fig. 4 with

the role of the coupling term δc1S
z
1S

z
2. Clearly, for large

positive δc1 the spin-spin interaction becomes antiferro-
magnetic, hSz1Sz2i ¼ −1, while for negative δc1 the system
is driven in the ferromagnetic phase with hSz1Sz2i ¼ 1. The
anisotropic ferromagnetic order, indicated by the pink area
in Fig. 4, is characterized by the long-range spin-spin
correlations with hSz1Sz2i < 1. The Haldane phase is real-
ized in the antiferromagnetic regime in the wide range of
the trap anisotropy parameter D provided that it is not
large negative.
The impact of the anisotropy has also a transparent

interpretation: Large positive values of D favor the Sz ¼ 0
ground state first facilitating the formation of the diluted
antiferromagnetic state and, ultimately, the nonmagnetic
state with Szj ≡ 0 at each site. Similarly to the spin-1
Heisenberg model, even slight anisotropy D < 0 switches
the system into the antiferromagnetic state [69]. Large
negative values of D push down Sz ¼ �1 states rendering

FIG. 4. Phase diagram of the ground state depending on the trap
anisotropy and the spin-spin coupling anisotropy. Insets illustrate
the typical spin configurations. The white circle indicates the
parameters of Ref. [14] (D ¼ δc1 ¼ 0).
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the exciton chain to the set of 1=2-pseudospins and
suppressing the Haldane phase.
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