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We show that the dynamics of (vertical) Franck-Condon excitations in the regime where Holstein-
coupled vibrational modes mix strongly with electronic degrees of freedom sharply contrasts with the
known self-localized behavior of vibrationally relaxed excitations. Instead, the strongly coupled modes are
found to periodically induce resonances between interacting electronic sites, during which effective
excitation transfer occurs, allowing Franck-Condon excitations to attain substantial mean square displace-
ments under conditions where relaxed excitations are essentially trapped to a single site. In demonstrating
this behavior, we employ a multiset matrix product state formalism. We find this tensor network state
method to be a remarkably efficient and accurate approach for the notoriously difficult problem posed by
the Holstein model in the regime where the electronic coupling, the vibrational quantum, and the
vibrational reorganization energy are comparable in magnitude.
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Introduction.—Holstein-type vibronic coupling, the cou-
pling of local vibrations to the transition energies of
electrons, holes, and excitons, is at the core of myriad
important dynamical phenomena in the physical sciences.
In addition to its importance in many inorganic systems, of
particular current interest is its manifestation in organic
molecular materials [1], with implications for photosyn-
thetic energy transfer [2–4] and singlet exciton fission
[5–9], amongmany other applications. At the same time, the
Holstein model continues to pose a considerable challenge
for theory, encompassing a rich parameter space involving
energy scales that include the electronic interaction strength
(J), the vibrational energy (ω0), the vibrational reorganiza-
tion energy (g2ω0), and the temperature. While certain
limits of this space are amenable to perturbative approaches
[10–14], no (semi)analytical treatment is available in the
regime where J, ω0, and g2ω0 are comparable. This regime,
where strong mixing between vibrational and electronic
coordinates occurs, is representative of many organic
materials, and has been the target of various numerically
exact techniques that have emerged in recent years. Such
techniques are based on either an elimination of vibrational
coordinates (by means of a system-bath decomposition)
[15–18] or an explicit but truncated representation of the
entire vibronic system [19,20]. However, both approaches
rapidly become prohibitively expensive with increasing
number of electronic and vibrational degrees of freedom.
This scaling issue drastically worsens with increasing
vibrational reorganization energies, as system-bath decom-
positions become difficult to converge and explicit descrip-
tions demand the inclusion of an ever increasing set of
bosonic states representing the vibrational coordinates. As a

result of this lack of viable methodologies, much remains to
be learned about how charges and excitons dynamically
interact with strongly coupled vibrations.
In this Letter, we employ the remarkable computational

benefits offered by tensor network states to explore the
nonequilibrium excitation dynamics resulting from the
single-mode Holstein model in its electronic single-particle
sector, covering the full range of the vibronic coupling
strength g, and including the strong-mixing regime. We pay
special attention to initial conditions corresponding to
different local excitations of the uncoupled Hamiltonian.
For initial excitations that are vibrationally relaxed in the
(shifted) excited state vibrational potential, we find the
mobility to decline with increasing g, as expected for
Holstein polarons. However, for Franck-Condon (sudden)
excitations, we find the g dependence to be markedly
weakened for a surprisingly long time period after initial-
ization. Concomitantly, we find the quasiballistic transport
found in the weak coupling limit to be replaced by a pulsed
transfer mechanism. An analysis of transient vibrational
overlap factors shows that this mechanism is driven by a
vibrational oscillation of the Franck-Condon excitation,
which protects the excited state from self-localizing while
allowing periodic resonances during which effective exci-
tation transfer occurs. This mechanism allows the excita-
tion to attain a substantial root mean square displacement
(RMSD) in coupling regimes where vibrationally relaxed
excitations are essentially immobile.
Tensor network states, in particular in their matrix

product state (MPS) form, have gradually attained popular-
ity as an efficient and accurate framework for describing
large interacting quantum systems [21,22]. Ground states
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of gapped one-dimensional systems are known to be
efficiently representable by MPSs [23,24]. Similarly,
MPSs have gained considerable traction in the application
to nonequilibrium dynamics, although considerable chal-
lenges remain due to the exponential scaling of their
computational cost with time for general, ergodic systems
[25]. Furthermore, while ample applications can be found
in strongly correlated many-body physics, MPSs have
remained relatively underrepresented in single-particle
electronic problems and in particular those concerning
the single-mode Holstein model, even though examples
targeting the ground state of its Hamiltonian appeared as
early as two decades ago [26]. Exceptions can be found for
zero-dimensional models with few electronic states coupled
to a potentially large number of modes, the dynamics of
which have been treated by related tensor network state
techniques since the 1990s [27–30]. The past few years
have seen the appearance of a few notable works showing
promising results for MPS-based calculations of the
Holstein model [31–33], yet the utility of tensor network
states to this class of problems has remained largely
unexplored. In this Letter, by demonstrating that MPSs
allow access to unprecedented time and length scales for
the single-particle Holstein model in the strong-mixing
regime, we showcase their potential for studying a host of
polaronic phenomena.
Theory.—For a lattice consisting of N sites, the Holstein

Hamiltonian in its electronic single-particle sector can be
expressed in terms of J, g, and ω0 as

Ĥ ¼ ω0

XN

α¼1

b̂†αb̂α þ gω0

XN

α¼1

ðb̂†α þ b̂αÞjαihαj þ J
XN

hα;βi
jαihβj;

ð1Þ

where b̂ð†Þα is the annihilation (creation) operator for a local
mode coupled to an electronic excitation jαi ¼ ĉ†αj0i at site
α, with ĉ†α as the electronic creation operator and j0i as the
electronic vacuum. The last summation is limited to
nearest-neighboring sites, α and β. Note that this
Hamiltonian includes local coupling of each electronic site
to a single, dispersionless Einstein oscillator. More general
coupling schemes would pose no difficulty for the applied
methodology, but are beyond the scope of the present study.
Tensor network states employ the principle that the wave

function coefficients of a state in a Hilbert space for N sites
can be thought of as a tensor of order N. Decomposing this
tensor into a product of smaller tensors, and truncating
these tensor products, replaces the exponential scaling with
N by a low polynomial (usually linear) scaling. In the case
of MPSs, such a decomposition takes the form

jΨi ¼
X

fσig
Aσ1
1 Aσ2

2 …AσN
N jσ1σ2…σNi; ð2Þ

where the indices σi label the physical basis states, and the
A tensors satisfy Aσi

i ∈ Cχi−1×χi. Here, the “bond dimen-
sion” χi controls the truncation applied to the internal
(virtual) indices. The degree of entanglement between
bipartitions of the system that can be accounted for by a
tensor network is determined by its bond dimensions as
well as its connectivity. Nonequilibrium dynamics gener-
ally leads to a (stretched) exponential increase of the bond
dimension necessary to describe the state accurately with
time, with the exception of localized systems [34,35]. Thus,
it is crucial to select a tensor network ansatz that captures
the entanglement buildup efficiently in order to simulate
physically relevant time scales.
For the Holstein model, an obvious choice for the tensor

network ansatz is to consider the Hamiltonian as a chain of
spinless noninteracting fermions, each of which is coupled
to its respective vibrational mode. After performing a
Jordan-Wigner transformation on the fermions, this prob-
lem can straightforwardly be treated as a MPS. However,
the reachable timescale under this ansatz is limited due to
the relatively fast growth of entanglement entropy. An
alternative approach considers the single-particle Holstein
model as an N-level impurity, the levels of which corre-
spond to the electronic single-particle states, where each
level is coupled to its respective mode. Within the realm of
MPSs, this impurity model is treated as an effectively one-
dimensional problem. However, the resulting connectivity
introduces long-range interactions between the vibrational
coordinates and the impurity site, again leading to a rapid
growth of entanglement.
Our tensor network ansatz is closely related to the

N-level impurity approach, but instead of solving the entire
system as a single MPS, we express its wave function in
terms of a set of products of electronic states and associated
vibrational wave functions:

jΨi ¼
XN

α¼1

jΨαijαi: ð3Þ

The vibrational wave functions jΨαi are then each
expanded independently as a MPS with a bond dimension
χ0, analogous to Eq. (2), the norm of which corresponds to
the electronic population at site α. The indices σi label the
vibrational states using the bosonic occupation number
basis associated with the (unshifted) ground state harmonic
potential, which are truncated beyond a maximum number
of quanta νmax. Note that such a multiset approach was first
introduced [36,37] for multiconfiguration time-dependent
Hartree methods [38,39], a related tensor network state
technique, and was very recently employed in a MPS
setting close in spirit to the one applied here [33]. Our
multiset MPS at a given bond dimension χ0 can be
converted to a standard MPS for the Jordan-Wigner trans-
formed Holstein model mentioned above. The resulting
bond dimension χ is tightly lower bounded by χ0 and
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loosely upper bounded by Nχ0. As such, the favorable bond
dimension of the multiset MPS renders it a promising
tensor network for obtaining both ground states and non-
equilibrium time evolution, the latter being explored in this
Letter. Despite introducing a quadratic scaling with the
system size, we find the multiset MPS approach to achieve
remarkably long length scales and timescales.
To obtain the time evolution of jΨi, we use the time-

dependent variational principle [40,41], which allows the
(time-local) optimal approximate solution of the time-
dependent Schrödinger equation to be computed, given a
variational ansatz (such as the multiset MPS as employed in
this work) [42,43]. It amounts to solving the projected
Schrödinger equation,

ij _Ψi ¼ P̂M½jΨi�ĤjΨi; ð4Þ

where P̂M½jΨi� is the projector onto the tangent space of
the variational manifold M attached to jΨi ∈ M [44,45].
The resulting dynamics is numerically exact up to times for
which the variational ansatz fails to capture the produced
entanglement accurately, and can be systematically con-
verged to longer times by increasing the bond dimension.
All presented data are obtained with a time step of dt ¼ 0.1
and are tightly (<1% deviation in the RMSD) converged
with respect to boundary effects as well as all numerical
parameters (see Table I and Ref. [45]). Applying less
stringent convergence criteria is tempting; however, there is
numerical evidence that loose convergence of asymptotic
properties can yield qualitatively incorrect results [46].
Not being limited to ground state or band-edge excited

states, we are free to differentiate between the following
two vibrational initial conditions for a local (in real space)
electronic excitation. The first condition is that of an
excitation vibrationally relaxed in the (electronically)
excited state potential (referred to as “relaxed”), whereas
the second corresponds to an excitation created upon
a vertical transition starting from the zero-vibrational
(electronic) ground state level (known as a Franck-
Condon excitation). These two cases can be regarded as
the two extremes spanning the scope of commonly used
nonequilibrium initial conditions. The Franck-Condon

excitation is representative of an impulsive optical excita-
tion of a vibronic system involving a vibration whose
energy is large compared to the thermal quantum, which is
satisfied by most functionally relevant Holstein modes
studied in the literature. The relaxed excitation, on the
other hand, is a pragmatic initial condition for models
involving a “shifted” basis for describing (electronically)
excited state vibrations [47], and can be regarded as a proxy
for optical pumping into the lowest-energy vibronic (0–0)
transition. For the dynamics of electronic excitations
localized in momentum space, we refer the reader to
Ref. [48].
Results.—In Fig. 1 we present excitation dynamics for a

linear chain with open boundaries, following an initial
excitation located at the chain center, under the two
aforementioned vibrational preparations. Shown as heat
maps are the calculated chain populations as a function of
time (in units of inverse energy, with ℏ ¼ 1) resulting from
the Holstein model with ω0 ¼ J ¼ 1 and for varying values
of g. The dynamics for g ¼ 0.5 is near identical for both
initial vibrational conditions, which is consistent with the
notion that these conditions become equivalent in the limit
of g → 0, and is dominated by a ballistic component
characteristic of a vibronically uncoupled excitation. The
excitation mobility can be seen to decrease with increasing
g, indicative of the formation of a polaron with increasing
effective mass, including a rapid decline of the mobility of a
relaxed excitation in the regime of strong coupling, as a
result of self-localization. However, in marked contrast to
the relaxed excitation, the Franck-Condon excitation is
seen to retain a substantial mobility even under strong
coupling. This trend is shown more systematically in Fig. 2,
which depicts the transient RMSD for values of g ranging
from 0 to 4. For g ¼ 2.5, the Franck-Condon excitation
spread rapidly reaches ∼6 sites, whereas the relaxed
excitation remains essentially stalled on a single site.

TABLE I. Numerical parameters for the different applied
coupling strengths g in one and two spatial dimensions: local
bosonic Hilbert space dimension νmax, bond dimension χ0,
number of lattice sites N, and time step dt.

1D 2D

g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 2.0

νmax 8 16 16 64 64 64 128 128 8 64
χ0 16 16 16 16 32 32 32 32 16 32
N 301 75 75 51 25 25 25 25 15 × 15 11 × 11
dt 0.1 0.1

FIG. 1. Excitation density ρ as a function of time (vertical) and
site (horizontal) for Franck-Condon (upper panels) and relaxed
(lower panels) excitations. Red curves show the excitation density
profile at t=2π ¼ 6.

PHYSICAL REVIEW LETTERS 123, 126601 (2019)

126601-3



An alternative means of demonstrating the contrasting
dynamics emerging from relaxed and Franck-Condon
excitations is by plotting the RMSD at a fixed time for
varying g. This is shown in Fig. 3 for t=2π ¼ 6. Here, the
delocalization of the relaxed excitation shows a pronounced
drop with g exceeding unity, which is almost entirely absent
for the Franck-Condon excitation. Interestingly, within this
coupling range we see the emergence of a beating pattern
for the Franck-Condon excitation dynamics in Fig. 2, with
2π-periodic enhancements in the RMSD becoming more

abrupt with increasing g. This indicates that their dynamics
stems from a mechanism that is radically different from that
of relaxed excitations in the strong coupling limit. In order
to understand the nature of this mechanism it is insightful to
consider the transient overlap of the vibrational wave
function inside the electronically excited potential with
that of the zero-vibrational state in the ground state
potential. Shown together with the RMSDs in Fig. 2, this
overlap exhibits a beating pattern roughly in sync with that
seen for excitation transport, such that regions of large
vibrational overlap coincide with abrupt enhancements in
the RMSD.
The physical picture of the dynamics of strongly coupled

Franck-Condon excitations emerging from our results is
shown schematically in the inset of Fig. 2. Upon initial
excitation, the vibrational wave packet oscillates in and out
of the Franck-Condon region, as indicated by the beatings
apparent in the calculated vibrational overlap. When inside
this region, excitation transfer to neighboring sites is
effective due to a resonance between the (inverted)
Franck-Condon transition at the donor site and that at
the neighboring site. Moving out of this region, however,
the transition energy at the donor site will rapidly decrease,
leaving the vibrationally relaxed neighboring site without
an energy-matching transition with significant vibrational
overlap. Importantly, the sustained motion of the strongly
coupled vibration protects the electronic excitation from
self-localizing while periodic resonant transfers occur.
Next, we briefly discuss the manifestation of the dynam-

ics in two dimensions. Higher-dimensional tensor network
structures are computationally demanding, while mapping
higher-dimensional problems to a one-dimensional tensor
network induces long-range connectivity, resulting in
complicated entanglement structures. This renders the
application of tensor network states in two dimensions
and above a challenging endeavor, particularly so for
dynamical problems involving strongly correlated elec-
tronic systems for which the timescales reached in state-of-
the-art calculations have been limited [49]. Interestingly,
for the two-dimensional Holstein model mapped to a chain
in a row-by-row manner (from left to right and from bottom
to top), again with ω0 ¼ J ¼ 1, we are able to reach
timescales (t ∼ π=J) comparable to earlier efforts with
modest computational resources. Although a detailed
investigation of the performance of our method in higher
dimensions is beyond the scope of the present Letter, we
speculate that the principle that entanglement is introduced
indirectly (by coupling between different sets) aids in
obtaining a favorable computational performance even in
two dimensions. In Fig. 4, we show the excitation densities
for select reorganization energies and excitation conditions,
given a square lattice with open boundary conditions and an
excitation initiated at the center. For weak coupling, both
the relaxed and Franck-Condon excitation are equally
spread out, exhibiting a well-resolved two-dimensional

FIG. 2. Upper panels: RMSD against time for Franck-Condon
(solid lines) and relaxed (dashed lines) excitations. Inset: Sche-
matic of the vibrationally induced transfer mechanism for Franck-
Condon excitations. Data for g ¼ 1.5 are reproduced in both
panels for comparison. Lower panel: Overlap F0 between the
vibrational wave packet in the electronically excited potential and
that of the zero-vibrational state in the ground state potential for
the central site.

FIG. 3. RMSD at time t=2π ¼ 6 as a function of the vibronic
coupling strength for Franck-Condon (black crosses) and relaxed
(red dots) excitations.
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interference pattern. Consistent with the one-dimensional
case, with increasing g we find the spread of the Franck-
Condon excitation to be significantly more pronounced
than that of the relaxed excitation.
Conclusions.—We have shown that mixing of electronic

coordinates with strongly coupled vibrational modes results
in Franck-Condon excitations whose initial dynamics is
markedly different from that known for vibrationally relaxed
excitations. Sustained vibrationalmotion is found to generate
periodic resonances between neighboring electronic sites,
during which effective energy transfer occurs, allowing a
Franck-Condon excitation to spread over substantial
distances in parameter regimes where relaxed excitations
are essentially self-trapped on a single site. Of course, over
much longer timescales one expects that this mechanism no
longer governs the dynamics, and behavior akin to that of the
relaxed initial condition takes over. In addition to providing
fundamental insight into strongly coupled vibronic systems,
these results have implications for the nonequilibrium
behavior of materials upon vertical transitions from a vibra-
tionally relaxed (ground state) initial condition, in particular
when the functionally relevant dimensions of thematerial are
in the range of the mean square displacements found in our
calculations. In many practical cases excitation conditions
are near vertical, resulting from impulsive perturbations of
the electronic degrees of freedom, and our findings reveal
that the subsequent ultrafast dynamics cannot be understood
based on vibrationally relaxed steady-state principles. In
unraveling this remarkable photophysical behavior, we have
accessed a notoriously difficult region of the single-particle
Holstein model, employing the computational benefits
offered by a multiset matrix product state approach. As
such, this work highlights the potential of this tensor network
state method in addressing problems involving charged and
excitonic polarons. The flexibility of this approach also

allows us to make progress in more complex situations, such
as long-range electronic hopping or higher dimensionality,
for which encouraging results have been presented in this
work. Lastly, given that ground states of gapped, one-
dimensional systems follow the area law of entanglement
entropy, we expect this approach to also perform well for
finding ground and low-lying excited states within the one-
dimensional single-particle Holstein model.
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