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We propose a driving protocol which allows us to use quantum dot arrays as quantum simulators for 1D
topological phases. We show that by driving the system out of equilibrium, one can imprint bond order in
the lattice (producing structures such as dimers, trimers, etc.) and selectively modify the hopping
amplitudes at will. Our driving protocol also allows for the simultaneous suppression of all the undesired
hopping processes and the enhancement of the necessary ones, enforcing certain key symmetries which
provide topological protection. In addition, we have discussed its implementation in a 12-QD array with
two interacting electrons and found correlation effects in their dynamics, when configurations with
different number of edge states are considered.
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Introduction.—Topological matter, and in particular
topological insulators (TIs) [1–3], are materials of interest
due to the presence of topologically protected surface
states, robust to local perturbations. Consequently, a great
effort is being made to simulate the behavior of TIs by
tailoring other quantum systems, whose properties can be
more easily controlled. Within this context, time-dependent
modulations have proven to be useful tools to modify the
topology [4–15]. Particularly, they have been used to
simulate the so-called “Floquet topological insulators”
(FTIs) [16–18] upon different systems [18–39].
Quantum dots (QDs) have revealed themselves as

highly tunable quantum systems [40–43], in which both
on-site energies [44] and couplings [45,46] can be
independently addressed. This makes them an interesting
platform for quantum simulation [47–49]. Recent exper-
imental evidence on scalable quantum dot devices [50,51]
demonstrates reproducible and controllable long QD
arrays, which opens up new possibilities of simulating
1D TIs.
In this work we show that a quantum simulator for

1D topological phases can be obtained by periodically
driving an array of QDs with long-range hopping. We
propose a driving protocol which allows us to imprint
bond order in the lattice [52], while also offers tunability
for the long-range hoppings. This control can lead to
configurations that would be unreachable otherwise, while
preserving the fundamental symmetries which guarantee
topological features. Thus, the driving protocol triggers
nonequilibrium topological behavior in a trivial setup,
opening the door to the simulation of different topological
phases. We also study the exact time evolution for the case
of two interacting electrons, and show that their dynamics
can become highly correlated. This allows us to discrimi-
nate between different topological phases and also opens
up new possibilities for quantum state transfer protocols.

Our proposal can also be implemented in other setups as
cold atoms or trapped ions [53–60].
Model.—We consider a Hamiltonian describing a

periodically driven chain of QDs:

HðtÞ ¼
X

ji−jj≤R
Jijc

†
i cj þ

X
i

AifðtÞc†i ci

≡Harray þHdrivðtÞ; ð1Þ

where c†i (ci) is the creation (destruction) operator for a
spinless fermion at the ith site of the array. The first term
represents the static Hamiltonian for a QD array of N sites,
with Jij being the real hopping amplitude connecting the
ith and jth dots. Note that long-range hoppings are allowed
to take place, up to range R. We will assume that hopping
amplitudes in the undriven system decay monotonically as
a function of the distance between sites, Jij ¼ Jðji − jjÞ.
The second term in Eq. (1), HdrivðtÞ, corresponds to a time-
periodic modulation of the on-site potentials Ai with
fðtÞ ¼ fðT þ tÞ, and frequency ω ¼ 2π=T.
Regarding the simulation of 1D topological phases in

QD arrays, the purpose of the time-periodic modulation is
threefold. First, the driving must generate bond order,
which is a crucial ingredient in toy models such as the
SSH [61]. Second, certain neighbor hoppings can be
simultaneously suppressed through the so-called coherent
destruction of tunneling [62,63]. This difficult requirement
turns out to be feasible when our driving protocol is
included, and it is crucial to generate the necessary
symmetries for the topological protection. Finally, other
hoppings can be enhanced to be able to explore topological
sectors with larger topological invariant.
All these objectives can be achieved through a spatially

modulated square ac field [64–66]
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fðtÞ ¼
�−1 if 0 ≤ t < T=2

1 if T=2 ≤ t < T
; ð2Þ

and, in particular, the simulation of an effective dimer
lattice with long-range hopping can be realized by choosing
the Ai in a stairlike fashion,

A2n ¼ nðαþ βÞ; A2n−1 ¼ nðαþ βÞ − α; ð3Þ

with n ¼ 1; 2; 3;…, which translates into an alternating
difference between two consecutive sites, namely, A2n −
A2n−1 ¼ α and A2nþ1 − A2n ¼ β. Given the time periodicity
of the Hamiltonian HðtÞ ¼ Hðtþ TÞ [67,68], we can take
advantage of Floquet theory to solve the time-dependent
Schrödinger equation. The solutions take the form
jψnðtÞi ¼ e−iϵntjunðtÞi, where the so-called Floquet modes
junðtÞi ¼ junðtþ TÞi have the same periodicity as the
Hamiltonian, and ϵn are the so-called quasienergies, which
play an analogous role to the energies in the static
Hamiltonians. In the high-frequency regime (ω ≫ J0),
the dynamics is essentially dictated by the stroboscopic
evolution of an effective time-independent Hamiltonian
Heff , which can be derived with a Magnus expansion. This
leads to an effective Hamiltonian identical to Harray, but
with renormalized hopping amplitudes [69]

Jij → J̃ij ¼ Jij
iω

πðAi − AjÞ
½e−iπðAi−AjÞ=ω − 1�: ð4Þ

From Eq. (4) we can see that even-neighbor hoppings
Ji;i�2m withm ¼ 1; 2; 3;… (� for hoppings to the right and
left, respectively) renormalize through Ai − Ai�2m ¼
∓mðαþ βÞ. This is important, because topological phases
with chiral symmetry are spoiled by the presence of
hoppings connecting sites within the same sublattice.
The quenching of all J̃i;i�2m can be achieved by choosing
αþ β ¼ 2ωq, with q ¼ 0; 1; 2;…. Hence, chiral symmetry
is recovered, regardless the maximum range of the hop-
pings included.
On the other hand, the renormalization of odd-neighbor

hoppings leads to bond ordering, due to the alternating
structure of the driving protocol. Together with the pres-
ence of chiral symmetry, this ensures the existence of
distinct topological phases. We identify the renormalized
J2i;2i−r as J̃−r0 and J2iþr;2i as J̃r (r ∈ ½1; 3; 5;…; R�),
obtaining [69]

J̃0−r ¼
iJ2i;2i−r

π½αω þ ðr − 1Þq� ½e
−iπðα=ωþðr−1ÞqÞ − 1�;

J̃r ¼
iJ2iþr;2i

π½ðrþ 1Þq − α
ω�
½e−iπððrþ1Þq−ðα=ωÞÞ − 1�: ð5Þ

Notice that now long-range odd hoppings can be tuned,
while keeping even hoppings suppressed. This can make

long-range hoppings dominate over short-range ones, and
then allows us to explore different topological phases by
just tuning the driving amplitudes. The sign of r in the
subscript is relevant since hopping amplitudes are now

complex functions, and hence J̃ð0Þ�r ¼ ðJ̃ð0Þ∓rÞ�.
Interestingly, our protocol can be generalized to repro-

duce different kinds of bond ordering and to enforce other
symmetries as well by choosing the driving on-site ampli-
tudes accordingly. A trimer chain [71] is a particular
example of a 1D system hosting nontrivial topological
phases that can be realized in our setup. In this case, chiral
symmetry is intrinsically absent, but the presence of another
crystalline symmetry, space-inversion symmetry, can pro-
vide for topological protection [72]. A trimer chain can be
realized in a QD driven monomer chain just by considering
A2n − A2n−1 ¼ A2nþ1 − A2n ¼ α and A2nþ2 − A2nþ1 ¼ β.
Topological phase diagram for driven QD arrays.—In

QD arrays, the bare hopping amplitudes typically decay
exponentially with distance, with a decay length λ: Jij ¼
Je−dij=λ, where dij is the distance between the ith and jth
dots and J is of the order of tens of μeV, which are the
typical energy scales in these setups. The distance between
two consecutive QDs is set to a ¼ 1=2 so that the unit cell
in the effective dimerized chain is 1. By varying the value
of α and λ in the driven system, topological phases with
different topological invariant can be realized (Fig. 1). The
topological invariant W is calculated as the winding
number of the Bloch vector d⃗ðkÞ¼ðRe½dðkÞ�;−Im½dðkÞ�Þ
around the origin [73], assuming a system with periodic
boundary conditions, with dðkÞ defined as

FIG. 1. Topological invariant W as a function of the driving
amplitude α=ω and decay length of hopping amplitudes λ, for
q ¼ 1. The maximum range of the hoppings included is fixed by
λ, such that the smallest bare hopping amplitude is a factor 10−8

smaller than the largest one.
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dðkÞ ¼
XR
r¼1

fJ̃0−reik½ðr−1Þ=2� þ ðJ̃rÞ�e−ik½ðrþ1Þ=2�g: ð6Þ

For small values of λ, onlyW ¼ 1 andW ¼ 0 phases are
allowed for all values of α=ω, since first-neighbor hoppings
are dominant (this corresponds to the SSH model). Then,
when λ is increased, other phases with larger W are
possible, as a function of the ratio α=ω (we have also
calculated the size of the gap in the Supplemental Material
[69], as one is typically interested in gap sizes smaller than
the temperature of the setup).
Typically, other driving protocols have been considered

in the literature, such as sinusoidal driving fields fðtÞ ¼
sinðωtþ ϕÞ [8,10,11,27], or standing waves fðtÞ ¼
cosðωtÞ cosðkxj þ ϕÞ [74]. However, none of them would
be suitable for engineering arbitrary chiral topological
phases. In both previous cases, renormalization of the
hopping amplitudes occurs through a zero-order Bessel
function, whose roots are not periodically spaced. Hence, it
would not be possible to suppress all even hoppings at
once, and chiral symmetry would not be present.
The experimental evidence provided in Ref. [50] dem-

onstrates a reproducible and controllable 12-quantum-dot
device. Motivated by this experimental setup, we propose
the implementation of our driving protocol in an array of 12
quantum dots. In Fig. 2 we show the quasienergies, as given
by the effective Hamiltonian, of a driven 12-quantum-dot
array, as a function of α=ω, with first- and third-neighbor
hoppings (second-neighbor hoppings were initially present,
but are effectively suppressed by the driving protocol),
fixing λ ¼ 1.5. The spectrum shows two topological phases
with W ¼ 1 and W ¼ 2.
Dynamics of two interacting particles.—The number of

edge states hosted by a finite system and their localization
properties determine the motion of charges along the chain.
Then, for an electron initially occupying the ending site,
one would see oscillations between the two edges of the
chain, with a frequency defined by the energy splitting
ωosc ∝ Eþ − E−, E� being the energy of each edge state in
the pair. Hence, one can discriminate between topological
phases with different numbers of edge states by studying
the electron dynamics.
These ideas are illustrated in Fig. 3, where we consider

two electrons with opposite spin loaded in a driven array of
12 QDs in such a way that the spin-up (spin-down) particle,
which we will denote as ↑ (↓), initially occupies the first
(third) site. We have also included a local interaction term,
being the total Hamiltonian,

H↑↓ðtÞ ¼
X
σ

X
ji−jj≤R

Jijc
†
i;σcj;σ þ

X
i;σ

AifðtÞni;σ

þ U
X
i

ni;↑ni;↓; ð7Þ

where σ ¼ ↑;↓. We do not include any spin-flip terms,
since experimental evidence on silicon QDs confirms that

the spin relaxation time within these QD structures is very
long compared with the other energy scales of the system
[75]. The Ai are chosen as indicated before, and α is fixed
such that the system hosts either two or four edge states.
Then, the dynamics is exactly calculated from the time

evolution operator Uðt; 0Þ ¼ e−i
R

t

0
H↑↓dt. Since H↑↓ is time

independent in each half period, the time-evolution operator
UðT; 0Þ can be factorized into two independent time-
evolution operators, UðT;0Þ¼UðTÞ¼UþðT=2ÞU−ðT=2Þ,
where the subscript� corresponds to the sign of fðtÞ in each
of them. We choose for our simulations ω ≫ J in order to
accurately match the analytic expression in Eq. (5); however
we have checked that valuesω≳ J still produce the expected
behavior.
First, α is chosen such that the system hosts one pair of

edge states (W ¼ 1 for the left half of Fig. 3), which have
the largest weight at the ending sites of the chain. When
interaction is turned off, particle ↑ oscillates between the
ends of the chain, while particle ↓ spreads along the chain:
at the third site, other states from the bulk have a non-
negligible contribution and the edge states do not dominate
the dynamics. When α is fixed so that the system has four
edge states (W ¼ 2 for the right half of Fig. 3), one of
the pairs is maximally localized at the first and last sites,
while the other has the largest weight at the third and
second-to-last sites. Hence, each particle is coupled to a
different pair of edge states and it displays oscillations
between different sites. The frequency of oscillation is also
different, since each pair has a different energy splitting

FIG. 2. Quasienergy levels of a driven 12-quantum dot array
and band structure in the thermodynamical limit (red and blue
filling for the valence and conduction band, respectively), as a
function of α=ω, including first- and third-neighbor hoppings, in
the high-frequency regime. Second-neighbor hoppings have been
suppressed through the driving protocol. The parameters are
λ=ω ¼ 1.5, q ¼ 1. Inset: each pair of edge states in the W ¼ 2
phase has a different energy splitting, which can be also varied by
tuning α=ω.
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(see inset in Fig. 2). The second pair has a bigger splitting
and thus oscillations for particle ↓ happen faster.
Interestingly, for the case of nonvanishing local inter-

action one can see that the general effect is to correlate
the dynamics of the two electrons. For the case of just one
pair of edge states, the interaction correlates the edge mode
with the bulk. They exchange spectral weight and oscillate
coherently. However the case of two pairs of edge modes
is more interesting, as the interaction correlates their
dynamics, modifying the frequency of the oscillation while
maintaining the edge modes isolated from the bulk. Notice
that in both cases the frequency of oscillations changes,
which is expected due to the nonlinear corrections pro-
duced by the interaction.
This difference in the exact dynamics for two particles

confirms the method proposed in this work to engineer
topological phases and provides a way to characterize them
by detecting the time evolution of the charge occupation in
the system.
Additionally, it is known that the edge states hosted

by an SSH finite chain with nontrivial topology allow for
long-range transfer of doublons directly from one end to the
other without populating the intermediate region [4]. Here
we show that the two-electron states can be directly
transferred between outer dots by considering topological
models with a larger winding number. Then, the presence
of more pairs of edge states, which can be controlled by

choosing a suitable value for α=ω, opens up the possibility
of designing new quantum-state-transfer protocols.
Conclusions.—We have proposed a driving protocol to

engineer topological phases in a QD array with exponen-
tially decaying hoppings. This is achieved by spatially
modulating the driving amplitudes to imprint bond ordering,
and by selective enhancement or suppression of the different
hopping processes. This generates the necessary symmetries
for topological protection. We have simulated a dimerized
chain with chiral symmetry by setting stairlike driving
amplitudes and dynamically quenching even hoppings.
Furthermore, our protocol allows us to enhance odd long-
range hoppings versus short-range ones, thus opening the
door to explore topological phaseswith differentW. The use
of square pulses allows for a highly selective tunability of
the different hoppings, where standard Floquet approaches
using harmonic pulses would fail.
For the experimental implementation, scalable QD

arrays of increasing size have been recently fabricated
[50,51], making our proposal feasible with state of the art
techniques.
To test our results we have simulated the exact dynamics

for an initial product state, including local Coulomb inter-
action. We show that charge dynamics, which can be
measured with quantum detectors in QD setups, discrimi-
nates between different topological phases. Additionally, we
have found that the interplay of driving and interactions

FIG. 3. Occupation of each site of a driven 12-QD array as a function of time when two electrons with opposite spin are loaded into the
system, for different values of U. The array has first- to third-neighbor couplings, whose values initially decay exponentially with
distance, choosing λ ¼ 1.5. Considering the high-frequency regime with ω ¼ 100 and q ¼ 1, the values for α have been chosen such
that the desired hopping renormalization is realized. The four left plots correspond to α ¼ 230, resulting in a topological phase with
W ¼ 1 (two edge states). The four right plots correspond to α ¼ 410, yielding a configuration with W ¼ 2 (four edge states).
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produces a drag effect between the electrons, which forms
correlated edge modes; this is not only of fundamental
interest but also relevant for quantum simulation and
information purposes.
Importantly, our protocol can also be implemented in

other platforms, or even straightforwardly extended to 2D
systems. The main requirement is the local control of the
driving amplitude at each site. In optical lattices [53,54]
this could be done with additional lasers [55], and the
engineering of long-range hoppings is well suited in this
case by selection of certain optical transitions [56]. In this
setup, different topological features have been directly
measured [57–60]. Trapped ions can also be used, as it is
possible to locally address each ion, and their effective
Hamiltonian can be reduced to that of single excitations
with long-range hopping decaying as ∼d−3 [74,76].
Finally, molecular patterning on surfaces by adsorbates
could also be considered [77–81].
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