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We analytically study spectral correlations and many body wave functions of a Sachdev-Ye-Kitaev
model deformed by a random Hamiltonian diagonal in Fock space. Our main result is the identification of a
wide range of intermediate coupling strengths where the spectral statistics is of Wigner-Dyson type, while
wave functions are nonuniformly distributed over Fock space. The structure of the theory suggests that such
manifestations of nonergodic extendedness may be a prevalent phenomenon in many body chaotic
quantum systems.
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Introduction.—In recent years, classifications of many
body quantum systems as either “ergodic” or “many body
localized” (MBL) have become mainstream. This reflects
the discovery of a growing number of systems supporting
MBL phases [1–12] and naturally extends the distinction
between single particle ergodic and Anderson localized
systems to many body quantum disorder. However,
recently, we are seeing mounting evidence [13–21] that
the above dichotomy may be too coarse to capture the
complexity of chaotic many body systems. Specifically,
recent work has put the focus on the study of statistical
properties of many body wave functions. It has been
reasoned that, sandwiched between the extremes ergodic
and many body localized, there might exist intermediate
phases of nonergodic extended (NEE) states, i.e., quantum
states different from localized in that they have unbounded
support, and different from ergodic in that their amplitudes
are not uniformly distributed. One reason why this option
comes into focus only now is that standard tools in
diagnosing chaos—spectral statistics applied to systems
of small size of Oð101Þ physical sites—are too coarse to
resolve the spatial structure of quantum states in Fock
space. Indeed, the above indications are indirect in that they
are based on numerical and analytic work on disordered
graphs with high coordination numbers, artificial systems
believed to share key characteristics with genuine random
Fock spaces. The complexity of the matter shows in that,
even for this synthetic system, there is a controversy
between work suggesting an NEE phase [13–16] and other
refuting it [17].
In this Letter, we present a first principles analytic

description of NEE states in a deformed version of the
Sachdev-Ye-Kitaev (SYK) model [22,23]. The standard
SYK model is a system of 2N ≫ 1 Majorana fermions,
½χi; χj�þ ¼ 2δij, governed by the interaction Hamiltonian

Ĥ0 ¼
1

4!

X2N

i;j;k;l¼1

Jijklχ̂iχ̂jχ̂kχ̂l; ð1Þ

where the coupling constants are drawn from a Gaussian
distribution, hjJijklj2i ¼ 6J2=ð2NÞ3, and the constant J
defines the effective bandwidth of the system as γ ¼
ðJ=2Þð2NÞ1=2 [24]. The model (1) is known to be in
an ergodic phase with eigenfunctions uniformly distributed
in Fock space [24,25]. To make the situation more
interesting, we generalize the Hamiltonian to Ĥ¼Ĥ0þĤV ,
where

FIG. 1. Left: Cartoon of Fock space sites n;m; l;… (indicated
by dots) connected by hopping operator P (solid lines). ForΔ≫1
exceeding the bandwidth of the unperturbed model, one may
approach the problem perturbatively, i.e., taking the isolated
eigenstates of levels vn, vm, vl as a starting point. The hybridi-
zation leads to level broadening κ of resonant neighbors (indicated
by hatched link) which have both energies vn, vm ≲ 1 within the
SYK band. Right side: Typical energy distributions of Fock-space
neighbors connected by P. The hybridization does, in general,
not generate overlap between neighboring sites. For Δ < N2

wave functions are thus extended (→ Wigner-Dyson statistics)
yet confined to only a fraction ∼1=Δ2 of the total Fock space.
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ĤV ¼ γ
XD

n

vnjnihnj; ð2Þ

is a sum over projectors onto the occupation number
eigenstates jni ¼ jn1; n2;…; nNi, ni ¼ 0, 1, of a system
of complex fermions ci ¼ 1

2
ðχ2i−1 þ iχ2iÞ, i ¼ 1;…; N

defined via the Majorana operators. The coefficients vn
can be chosen to represent any operator diagonal in the
occupation number basis fjnig pertaining to a fixed one-
body basis. For example, any one-body operator [26,27]
Ĥ0 ¼ 1

2

P
i;jJijχ̂iχ̂j can be diagonalized in the fermion

representation and described in this way. However, for
our discussion below it will be sufficient to consider
realizations of maximal entropy with coefficients vn drawn
from a box distribution of width Δ symmetric around zero.
In this way Δ sets the effective strength of the coupling in
units of the SYK bandwidth, and in the limit of asymptoti-
cally large Δ enforces Fock space localization in states n
with energies vn. TheHamiltonian Ĥ0 perturbs this “Poisson
limit” via transitions jni → jmi between states nearby in
Fock space. (The two-body Ĥ0 changes the occupation of a
state jni by at most four, and it preserves the number parity,
where we focus on even parity states throughout.) It does so
via only an algebraically small number ∼N4 ∼ lnðDÞ of
independent matrix elements, and thus defines an operator
with strong statistical correlation. However, we will see that
Ĥ0 is very efficient in introducing many body chaos, as
evidenced by the onset of Wigner-Dyson (WD) spectral
statistics, including for values Δ ≫ 1, where the diagonal
still dominates. Our main objective is to explore the profile
of the many body wave functions in this setting.
Qualitative picture.—Before turning to the quantitative

analysis of the problem, let us outline an intuitive picture of
nonergodic wave function statistics. Let us work in
dimensionless units, where the SYK bandwidth 1∼JN1=2

is set to unity, or J ∼ N−1=2. Consider a situation where the
strength of the diagonals Δ ∼ Nα, α > 0 parametrically
exceeds the bandwidth. In this case, we have a situation
where the “hopping” in Fock space induced by the SYK
Hamiltonian does not effectively hybridize the majority of
the ∼N4 states, m; l;…, neighboring a given n, cf. Fig. 1.
With the characteristic hopping amplitude t∼JN−3=2∼N−2,
a self-consistent golden rule argument may be applied
to estimate the residual smearing κ of n as κ ∼ jtj2
½N4ðκ=ΔÞ�ð1=κÞ ∼ ð1=ΔÞ ∼ N−α, where the term in paren-
theses is the number of neighbors that are in resonance, and
∼κ−1 is the broadened energy denominator. The effective
hybridization of two nearest neighbors requires overlap of
their smeared levels, a condition satisfied only by a fraction
ðκ=ΔÞ ∼ Δ−2 of neighbors. From this argument we infer
that typical wave functions occupy only a number D=Δ2 ∼
D=N2α of the available D sites in Fock space. We also note
that for N4=Δ2 ¼ N4−2α ∼ 1 the number of resonant
neighboring levels becomes of Oð1Þ. This is when we

expect the wave functions to fragment and a transition to
the Poisson regime to take place.
Matrix integral representation.—To obtain a more

quantitative picture, we start from a first quantized repre-
sentation, where the Hamiltonian Ĥ is considered as a
sparse matrix acting in a huge Fock space. This perspective
is complementary to that of the more conventional many
body GΣ formalism [22] probing the physics of collective
fluctuations close to the ground state. Formulated in this
language, the problem becomes one of random matrix
diagonalization and methods such as the powerful super-
symmetry technique, originally designed to solve single
particle hopping problems, become applicable. Specifically,
the occupation number basis fjnig plays a role analogous to
the position basis of a fictitious quantum state and Ĥ0 and ĤV

act as hopping and “on-site potential”Hamiltonians, respec-
tively. Within the first quantized approach, information on
the statistics of themany bodywave functions jψi at the band
center, ϵψ ¼ 0 (generalization to generic energies is straight-
forward but omitted for simplicity), is contained in thematrix
elements of the resolvent, G�

nn0 ¼ hnj � iδ − ĤÞ−1jn0i.
Specifically, the qth moment is defined as Iq ≡ ð1=ν0ÞP

nhjhψ jnij2qδðϵψ Þi, where h…i denotes averaging over
the randomness in the model, and ν0 ¼ hPψ δðϵψÞi is
the density of states in the band center. Using the eigen-
function decomposition Gþ

nn ¼
P

ψ jhψ jnij2ðiδ − ϵψ Þ−1,
this can be expressed as Iq ¼ −ð1=πν0Þlimδ→0ð2iδÞq−1P

n ImGþ
nnG

þðq−1Þ
nn [28], where the last equality relies on

the absence of degeneracies Eψ ≠ Eψ 0 , for ψ ≠ ψ 0 in a
disordered system. (For completeness, we apply the same
setup to compute the eigenvalue statistics and diagnose
Wigner-Dyson or Poisson statistics. See Supplemental
Material [29] for details.) Our principal workhorse in
computing the realization average of these expressions is
an exact integral representation hIqi¼∂β∂q−1

α
R
dYe−SðY;α;βÞ.

Here, the integration variables Y ¼ fYss0;σσ0
nn0 g are 2 × 2 ×D-

dimensionalmatrices which on top of the Fock space index n
contain an index s; s0 ¼ � labeling advanced and retarded
states, and a two-component index σ; σ0 ¼ b; f distinguish-
ing between commuting (Ybb, Yff ) and Grassmann valued
(Ybf , Yfb) matrix blocks [31]. This “supermatrix structure”
[29] is required to cancel unwanted fermion determinants
appearing in the computation of purely commuting or
anticommuting matrix integrals. (We cannot use replicas
to achieve determinant cancellation because the analysis
will involve one nonperturbative integration, not defined in
the replica formalism.)
Referring for a derivation of the above integral, and the

discussion of the source parameters α, β required to generate
the wave function moments to the Supplemental Material
[29], the action SðYÞ≡ SðY; 0; 0Þ of the field integral is
given by
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SðYÞ¼−
1

2
STrðYP−1YÞþSTr lnðiδσ3−ĤVþ iγYÞ; ð3Þ

where STrðXÞ≡P
n;s;σð−ÞσXss;σσ

nn is the canonical trace
operation for supermatrices [32]. To understand the structure
of the action, notice that the Green functions describe the
propagation of wave functions subject to random scattering
in Fock space. Contributions surviving the configuration
average are correlated as indicated in Fig. 2. The first term
in the action describes how the pair amplitudes Yss0;σσ0

n;n0

represent the propagation of two such states, specified by a
doublet of indices ðn; s; σÞ and ðn0; s0; σ0Þ. It is defined by an
operator P, which acts as PY ≡ ð1=N ÞPa XaYX

†
a, where

N ¼ ð2N
4
Þ, i.e., the multiplication of the two states repre-

sented by Y by the Majorana product operators contained in
the Hamiltonian, where Xa ≡ χiχjχkχl, and the shorthand
a ¼ ði; j; k; lÞ is used. The second term couples the Y
matrices to the fermion propagator effectively describing
the propagation in between SYK-scattering events, where
ðσ3Þss0 ¼ ð−Þsδss0 does the bookkeeping on causality.
Stationary phase approach.—Our strategy is to evaluate

the matrix integral by stationary phase methods backed by
excitation gaps present in the limit δ → 0. The structure of
the action suggests looking for solutions of the stationary
phase equations δȲSðȲÞ ¼ 0 diagonal in Fock space
Ynn0 ¼ Ynδnn0 . Physically, this restriction means that for
a fixed realization of the diagonals vn ≠ 0 phase coherence
of the pair propagation requires n ¼ n0 in the representation
of Fig. 2. The stationary phase equation then assumes the
form

Yn ¼ i
X

m

Πnm
1

i δγ σ3 − vm þ iYm
; ð4Þ

where the projection of the pair-scattering operator
PdPPd ≡ Π on the space of diagonal matrix configurations
acts on diagonal configurations as ðΠXÞn ¼

P
mΠnmXm ¼

ð1=N ÞPa;m jðX̂aÞmnj2Xm. The solution of the equation
now essentially depends on the structure of this operator.
We first note that the operators X̂a change at most four of
the N binary occupation numbers contained in n, implying
that Π is a local hopping operator in the space of n
states. The permutation symmetry inherent to the sum
over all configurations a ¼ ði; j; k; lÞ further implies that
the hopping strengths Πnm ¼ Πjn−mj depend only on the
occupation number difference between Fock space states,
where a straightforward counting procedure yields Π0 ¼
NðN − 1Þ=2N , Π2 ¼ 4ðN − 2Þ=N , and Π4 ¼ 16=N , and
all other matrix elements vanish. Armored with this result,
we interpret the right-hand side (r.h.s.) of the mean field
equation Eq. (4) as a sum over a large number of terms,
which are effectively random due to the presence of the
coefficients vm. In this way, YnðvÞ becomes a random
variable depending on the realizations v ¼ fvmg.
The structure of the mean field equation, and the

transition rates Πnm identifies the components Yss
n as the

self energies dressing the retarded (s ¼ þ) and advanced
(s ¼ −) Fock space propagators (also cf. inset of Fig. 2.).
The solutions Yn are obtained as sums over large numbers
of random contributions, which for small Δ implies a self
averaging property Yn ≃ hYniv ≡ Y0, where the r.h.s.
denotes the average over the independent distribution over
vm. Ignoring the imaginary part of Yn (which does no more
than inducing a weak shift vn → vn þ ImYn ≃ vn of the
random energies), and averaging v over a box distribution
h…iv ¼

Q
m

RΔ=2
−Δ=2ðdvm=ΔÞð…Þ, we obtain Y0 ¼ κσ3,

where the self energy κ obeys the equation κ ¼
ð2=ΔÞ arctanðΔ=2κÞ. The solution smoothly interpolates
between κ ≃ 1 for the weakly perturbed model Δ ≪ 1 and
κ ≃ π=Δ for Δ ≫ 1. In accordance with the qualitative
discussion above, this decay reflects that for Δ ≫ 1 the
majority of sites neighboring a fixed n are off resonant
and decouple from the self energy. We also note that the
averaged density of states ν0 ¼ −ImhtrðGþÞi ¼ Dκ=πγ
shows the same behavior. Before proceeding, let us ask
when the above approximations break down and the
stationary solutions become strongly fluctuating in the
sense varðYnÞ > Y2

0. Assuming that Ym ≃ Y0 on the r.h.s.
of Eq. (4), a straightforward calculation leads to
varðYnÞ ≃ ð10π=N4κ2ÞF ðΔ=2κÞ, where F ðxÞ is a function
monotonically increasing from F ð0Þ ¼ 0 to F ðxÞ ¼ Oð1Þ
at x ∼ 1 before decaying as F ðxÞ ∼ 1=x at x ≫ 1 [33].
A balance varðYnÞ ∼ Y2

0 is reached when κ2 ∼ Δ−2 ∼
ð1=N4κ2Þðκ=ΔÞ ∼ N−4, where κ ∼ Δ−1 was used. This
shows that only for disorder strength Δ > ΔP ∼ N2 para-
metrically larger than the bandwidth, the homogeneity
of the stationary phase configuration in Fock space
gets compromised. This observation is one of the most

FIG. 2. The scattering of wave function amplitudes in Fock
space. Variables Yss0;σσ0

nn0 describe the correlated propagation of
resolvents (solid lines) labeled by a conserved index ðs; σÞ.
Scattering processes (indicated by dots) can be distinguished into
those dressing propagators by “self energies” (dashed lines
connecting same resolvent) and vertex contributions (dashed
lines connecting different resolvents). Hatched regions summa-
rize repeated, ladder-diagrams of vertex contributions and define
the slow modes in the system. Inset: Self consistency equation for
self-energy Eq. (4).
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important results of this Letter. As we will demonstrate in
the following, it provides the basis for the analytical
extraction of wave functions and spectra.
Wave function statistics.—In the limit δ → 0, Y0 ¼ κσ3

is but one element of a manifold of stationary solutions,
Y0 ¼ κTσ3T−1 ≡ κQ, where T ¼ fTss0;σσ0 g is a 4 × 4
rotation matrix in advanced-retarded and super space.
The absence of Fock-space indices implies ½P; Q� ¼ 0,
which in combination withQ2 ¼ 1means that the first term
in Eq. (3) is independent of T. We conclude that the
stationary phase action of the matrix integral is given by

S½Q� ¼ STr lnðiδσ3 − ĤV þ iγκQÞ: ð5Þ

This action is known to describe [34] the Rosenzweig-
Porter (RP) model [35]: a D-dimensional Gaussian random
matrix ensemble perturbed by a fixed diagonal, ĤV . We
thus conclude that for diagonals withΔ < ΔP the deformed
SYK model and this much simpler model are in the same
universality class. The first step of the computation of
the wave function statistics [34] based on Eq. (5) is the
integration over the matrix T. This integration is not
innocent, because the 2 × 2 block Tbb defines a non-
compact integration manifold [32]. The convergence of
the corresponding integral is safeguarded only by the
infinitesimal symmetry breaking parameter iδ, and inte-
gration over T [29] indeed produces a singular factor δ−qþ1

canceling the δ dependence in the definition of the wave
function moments, and leading to the result

Iq ¼
q!
νq0

X

n

hνðnÞqiv; νðnÞ≡ ν0
Dðv2n þ κ2Þ : ð6Þ

Intuitively, the r.h.s. contains the qth moments of local
Green’s function matrix elements, with energy denomina-
tors broadened by the self energy κ. It is straightforward to
average this expression over the box distribution of the
individual vn and obtain

Iq ¼ −ð−2ÞqqD1−q∂q−1
y2
0

ð1=y0ΔÞ arctan ðΔ=2y0Þ: ð7Þ

For Δ ≪ 1 smaller than the SYK bandwidth, this asymp-
totes to the random matrix result IðqÞ ¼ q!ðD=2Þ1−q,
demonstrating a uniform state distribution. In the
opposite case, Δ ≫ 1, y0 ¼ π=Δ and the moments Iq ¼
ð2π2Þ1−qqð2q − 3Þ!!Δ2ðq−1ÞD1−q, show power law scaling
in Δ. Finally, for Δ ∼ Nα the wave functions become
nonergodic Iq ∼ ½D=N2α�1−q, and now only occupy a
∼1=N2α fraction of Hilbert space, in line with the quali-
tative discussion above. In Fig. 3, these predictions are
compared to wave function moments obtained by exact
diagonalization forN ¼ 13 as a function of the deformation
parameter (main panel), or as a function of system
size N ¼ 7;…; 13 at fixed deformation (lower left panel).

The figure demonstrates excellent, and parameter free
agreement with the analytic result.
The figure also confirms the statement that throughout

the entire window Δ < ΔP, or 0 ≤ α < 2, the spectral
statistics remains Wigner-Dyson like. This is probed by
comparing the relative, or Kullback-Leibler entropies [37]
KLðpjqÞ≡P

k pk lnðpk=qkÞ between the numerically
obtained moments qk and the Wigner-Dyson, or Poisson
distribution pk, respectively. The upper inset of Fig. 3
shows that the change between the two statistics takes place
at the deformation strength analytically predicted as
Δ ∼ ΔP ≃ 120, beyond which both saturation of the wave
function moments [36], and the level statistics indicate
Poissonian behavior.
Conceptually, the robustness of spectral correlations

follows from the equivalence (SYK ∼Δ<ΔP RP), the latter
being a model demonstrating the strong resilience of a
single random matrix against perturbations on its diagonal.
The domain of the above equivalence is limited by both the
deformation strength of SYK Δ≲ N2, and the width of the
probed spectrum ϵ≲ δN2, where δ is the many body level
spacing [38]. Outside this window, for Δ≳ N2, the theory
predicts a fragmentation of the Fock space homogeneous
mean field (equivalent to the fluctuations of a single
random matrix ensemble) into inhomogeneous stationary
configurations, κ → κn. On the background of this inho-
mogeneous configuration one may construct a lattice
field theory that indeed predicts a Fock space localiza-
tion transition at Δ ∼ ΔP [39]. Finally, models of the
perturbation different from the identically distributed vn,
lead to similar results. Specifically, a random one-body

FIG. 3. Inverse participation ratio as a function of Δ, normal-
ized by I2ðΔ ¼ 0Þ, from exact diagonalization N ¼ 13; the
analytical prediction Eq. (7) is indicated by the solid line. Left
inset: Relative entropy (Kullback-Leibler) between numerical
and Wigner Dyson (dashed), respectively, Poisson (solid) dis-
tributions. Right inset: Inverse participation ratio as a function of
N, normalized by I2ðN ¼ 7Þ, from exact diagonalization at
Δ ¼ 10; solid line is the analytical prediction from Eq. (7) [36].
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term, Ĥ1 ≡P
N
j¼1 η2j−1η2jvj is equivalent to ĤV with

statistically correlated vnðfvjgÞ. Referring to Ref. [39]
for details, this leads to similar scaling over a slightly
higher tolerance window, ΔP ≲ N9=4.
Summary and discussion.—The model considered in this

Letter defines the perhaps simplest many body system
showing a competition between Fock space localization
and ergodicity. We are seeing unambiguous evidence that
the passage between the two limits is not governed by a
single many body localization transition but contains a
parametrically extended intermediate phase characterized
by a coexistence of Wigner-Dyson spectral statistics and
non-trivial extension of wave functions over Fock space.
Methodologically, this phenomenon emerged as the result
of a competition: the hopping in Fock space generated by
the SYK two-body interaction stabilized a uniform mean
field against the “localizing” tendency of the Fock-space
diagonal operator Ĥv. We have identified an intermediate
regime, where the corresponding low energy theory is
governed by a homogeneous fluctuation mode T0, acting
on top of a background containing inhomogeneous energy
denominators. This mechanism appears to be of a rather
general nature and makes one suspect that nonergodic
wave function statistics in coexistence with random matrix
theory spectral correlations could be a more frequent
phenomenon than previously thought.
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