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We present a formalism that accounts for the interaction of a local quantum system, such as an atom or a
cavity, with traveling pulses of quantized radiation. We assume Markovian coupling of the stationary
system to the input and output fields and nondispersive asymptotic propagation of the pulses before and
after the interaction. This permits derivation of a master equation where the input and output pulses are
treated as single oscillator modes that both couple to the local system in a cascaded manner. As examples of
our theory, we analyze reflection by an empty cavity with phase noise, stimulated atomic emission by a
quantum light pulse, and formation of a Schrödinger-cat state by the dispersive interaction of a coherent
pulse and a single atom in a cavity.
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Introduction.—Quantum states of light may find appli-
cations for precision sensing [1,2] and as processing or
flying qubits in quantum computers and quantum commu-
nication networks [3,4]. While the intuition behind the
generation of single photon and multiphoton states and
demonstration of atom-photon and photon-photon quantum
interactions portrays the state of light as a superposition of
Fock states of a single mode or a few modes, propagating
fields in reality explore an infinite continuum of modes that
prohibit a full quantum treatment by a Schrödinger picture
wave function or density matrix.
If the physical setup contains guided fields and material

systems with only a single shared quantum of excitation,
the quantum state can be expanded on discrete excited
states and single quantum wave packets (see, e.g., [5]). The
introduction of further quanta of energy, however, compli-
cates matters significantly, as both particle aspects (photon
number) and wave packet aspects require a full quantum
treatment such as a formal multiphoton S-matrix scattering
theory [6–8]. Alternatively, an expansion of the field state
restricted to the continua of, say, one- and two-photon
states [9,10] may be adequate to describe many processes
relevant to quantum information processing with few
photons [11–16]. For a recent review of these and further
theory approaches see Ref. [17].
To deal specifically with the quantum state occupying a

single pulse, a more tractable theory is desired. Indeed, Itô
calculus approaches [18,19] lead to quantum filters and
master equations [20] and the so-called Fock master
equation [21] that permits evaluation of the state of a
quantum system that is driven by an incident quantum pulse
in a superposition of Fock states. Mean values and
correlation functions of the fields emitted by the system
can then be expressed in terms of system observables, but
they do not provide the full quantum state of the out-
put field.

The emission from a quantum system will not, in
general, be restricted to a single mode, but we can choose
to examine any particular propagating wave packet and
consider the quantum state occupying just that mode after
the interaction with the quantum system. Our theory thus
accounts for the kind of experiment depicted in Fig. 1(a),
where a wave packet is incident on an arbitrary quantum
system, which we assume can be adequately described in a
Hilbert space of finite dimension d. The quantum state of a
suitably defined outgoing wave packet is precisely the

(a)

(b)

FIG. 1. (a) An incident pulse with a temporal envelope uðtÞ and
arbitrary quantum state content interacts with strength

ffiffiffi
γ

p
with an

arbitrary quantum system observable ĉ. The system is described
by a Hamiltonian Ĥs, and it is depicted here as a two-level system
inside a resonator. In this Letter, we provide a theory for the full
quantum state of light occupying any reflected temporal pulse
vðtÞ. (b) We model the situation of arbitrary traveling pulses in
(a) by virtual cavities with complex, time-dependent mirror
couplings, guðtÞ and gvðtÞ, designed so they exactly eject and
absorb the modes uðtÞ and vðtÞ.
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information retained by typical quantum communication or
computing protocols, while the radiation that is not
captured by that mode represents loss. Our theory is general
and applies for any selected output mode function. At the
end of the Letter, we shall propose strategies to select the
most relevant, e.g., most populated, mode function and
generalizations to deal with multiple input and output
pulses.
Theory.—In Fig. 1(a), a quantum system described by a

possibly time-dependent Hamiltonian ĤsðtÞ is coupled to
an input bosonic field b̂inðtÞ by an interaction (ℏ ¼ 1)
V̂SBðtÞ ¼ i

ffiffiffi
γ

p ½ĉb̂†inðtÞ − ĉ†b̂inðtÞ�, where ĉ is a system
operator. If ĉ is a lowering operator, γ is the corresponding
decay rate of excitations in the system, and the outgoing
field after interaction with the system is given by the input-
output operator relation b̂outðtÞ ¼ b̂inðtÞ þ ffiffiffi

γ
p

ĉðtÞ [22,23].
Direct application of this expression requires knowledge of
the time-dependent system operator ĉðtÞ in the Heisenberg
picture, which is only available if ĤsðtÞ is sufficiently
simple (e.g., quadratic in oscillator raising and lowering
operators ĉ and ĉ† [23]).
Since we shall treat the case of a quantum state input

occupying a single normalized wave packet uðtÞ, it is
natural to seek a Schrödinger picture description of the
input by the Fock states jni, related to a single bosonic
creation operator

b̂†u ¼
Z

dt uðtÞb̂†ðtÞ: ð1Þ

The pulse shape is modified by the interaction and the
outgoing pulse may acquire multimode character, which
complicates a full numerical treatment. However, it is
possible to consider the output radiation from the system,
carried by any particular outgoing mode function vðtÞ, as
sketched in Fig. 1(a). The essential idea of our approach is
therefore to describe the input and output pulses by two
separate field modes. Assuming the Born-Markov approxi-
mation, this can be done in an exact manner.
To alleviate the problem of dealing with the spatiotem-

poral propagation of quantum fields, we note that any
arbitrary wave packet can be emitted as the output from—
or absorbed as the input to—a virtual one-sided cavity with
time-dependent complex coupling i½g�ðtÞâb̂†in − gðtÞâ†b̂in�
to its input continuum fields. These virtual cavities work as
coherent beam splitters between the discrete intracavity
modes and specific wave packets incident on and emanating
from the cavities. In particular, if guðtÞ is chosen such that

guðtÞ ¼
u�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
R
t
0 dt

0juðt0Þj2
q ; ð2Þ

the initial intracavity quantum state at t ¼ 0 is emitted as a
traveling wave packet given by the time-dependent mode

function uðtÞ [24]. An alternative protocol to release a
cavity state into a specific complex wave packet, applying a
real coupling coefficient and a time-dependent cavity
detuning, was derived in [18].
Similarly, a single mode cavity with complex input

coupling

gvðtÞ ¼ −
v�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

t
0 dt

0jvðt0Þj2
q ð3Þ

will asymptotically acquire the quantum state content of a
wave packet vðtÞ incident on the cavity. This result is
readily shown by the equivalent equations for classical field
amplitudes and for single photon wave packets [25].
Rather than propagating pulses interacting with a local

scatterer, we can thus describe the problems as a cascaded
system with time-dependent couplings, see Fig. 1(b).
Because of the assumption of Markovian coupling to the
continuous field degrees of freedom and dispersion-
free propagation of the wave packets, we can apply the
cascaded-system analysis by Gardiner [26] and Carmichael
[27] to obtain a master equation that involves only the
quantum states of the intermediate quantum system and the
field states of the two cavity modes, represented by field
operators âu and âv.
This can be accomplished in a systematic manner in the

so-called SLH framework [28,29], by concatenating the
Hamiltonians and damping terms according to the routing
of output from one system into another. The density matrix
of the total system evolves according to a master equation
on the Lindblad form,

dρ
dt

¼ −i½Ĥ; ρ� þ
X
i¼0

�
L̂iρL̂

†
i −

1

2
fL̂†

i L̂i; ρg
�
; ð4Þ

where f·; ·g denotes the anticommutator, and the
Hamiltonian

ĤðtÞ ¼ ĤsðtÞ þ
i
2
½ ffiffiffi

γ
p

guðtÞâ†uĉ
þ ffiffiffi

γ
p

g�vðtÞĉ†âv þ guðtÞg�vðtÞâ†uâv − H:c:� ð5Þ

contains terms that represent coherent exchange of energy
between the three components.
The damping terms in Eq. (4) include a single Lindblad

operator of the form

L̂0ðtÞ ¼ ffiffiffi
γ

p
ĉþ g�uðtÞâu þ g�vðtÞâv; ð6Þ

representing the output loss from the last cavity, as well
as operators L̂i with i > 0, representing separate decay and
loss mechanisms of the quantum scatterer. The formalism
may be extended to include several input and output modes
(see Supplemental Material [30]).
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The solution to (4) yields the density matrix of the joint
system and provides a full quantum state description of the
output mode and of its potentially entangled state with the
scatterer. Our theory thus goes far beyond the study of
expectation values and low-order correlation functions of
the output field operators. The restriction of the dynamics
from the infinite continuum to only two field modes
reduces the infinite-dimensional Hilbert space to one of
dimension N ≤ ðN þ 1Þ × d × ðM þ 1Þ, where N and M
are the maximum number of excitations in the incoming
and outgoing modes. Our full quantum description amounts
thus to the evolution of an N ×N density matrix ρ. Next,
we shall present a few examples of our formalism.
Numerical solutions to the master equation (4) are obtained
using the QuTIP toolbox [31,32].
Examples.—As a first example of our formalism, we

consider the scattering on an empty one-sided cavity with
resonance frequency ωc. The local system Hamiltonian is
Ĥs ¼ ωcĉ†ĉ and scattering with coupling amplitude

ffiffiffi
γ

p
of

the input field to the cavity field is readily described
by a frequency-dependent reflection coefficient rðωÞ ¼
½iðω − ωcÞ þ γ=2�=½iðω − ωcÞ − γ=2�. That is, the Fourier
transformed pulse shapes obey

vðωÞ ¼ rðωÞuðωÞ: ð7Þ

In the upper panel of Fig. 2, we show how a real Gaussian
pulse uðtÞ is reflected into a mode vðtÞ, which is also real
but has a sign change around the time γt ¼ 4. The squared
value of the corresponding coupling strengths jguðvÞðtÞj2 are
shown in the same panel. The lower panel shows how the
average photon number in the input, cavity, and output
modes change with time for an initial one-photon Fock
state in the input pulse. We emphasize that in this case the
perfect state transfer is guaranteed to the known output
mode. If we solve the master equation (4) with any other
choice of output mode, the transfer will be imperfect.

As an example of a system that scatters a single input
pulse into a multimode output, we consider phase noise in
the system, e.g., due to a jittering of one of the cavity
mirrors on a timescale τjit. This imposes an additional
Lindblad term L̂1 ¼ τ−1=2jit ĉ†ĉ in the master equation (4)
(see Ref. [33] for an extended discussion of this model),
but poses no problem for our numerical solution of the
problem.
In Fig. 3, we present calculations for the same input and

output modes as in Fig. 2 with the incoming pulse prepared
in a coherent state jα ¼ 2i. The phase noise causes an
imperfect transfer to the examined output mode vðtÞ and a
corresponding output flux IoutðtÞ ¼ hL̂†

0L̂0i from the
final virtual cavity at intermediate times. The insert
Wigner function shows that the quantum state of the
outgoing mode is not a coherent state but may be described
as a statistical mixture of coherent states with reduced
amplitude and rotated by a range of different complex
phases.
Through a comprehensive derivation, relying on Itô

calculus, Fischer [34] has investigated the emission from
an excited atom, stimulated by an incident quantum pulse
and, particularly, how efficiently such stimulated emission
occurs into the mode occupied by the incident photons. Our
formalism allows treatment of this problem with minimal
effort. Imagine a two-level atom with ground state jgi that
is prepared in its excited state jei and decays at a rate γ by
the dipole lowering operator ĉ ¼ jgihej.
An exponentially decaying mode uðtÞ ¼ ffiffiffi

Γ
p

e−Γt=2ΘðtÞ,
where ΘðtÞ is the Heaviside step function, has been
identified as optimal for stimulated emission [35], where
the optimal value of Γ depends on the quantum state of the
incoming pulse. The fiducial cavity couplings leading to
this ansatz for uðtÞ and vðtÞ are given by Eqs. (2) and (3) as

FIG. 2. Scattering of a single photon in a Gaussian mode on an
empty cavity. (Upper) The incoming pulse uðtÞ (red shaded
Gaussian shape) and the reflected pulse vðtÞ (blue shaded non-
Gaussian shape), given by (7). The solid (dashed) curves show
the squared coupling strengths jguðtÞj2 and jgvðtÞj2, given by
Eqs. (2) and (3). (Lower) Average photon number as a function of
time in the incoming and outgoing pulses and inside the cavity.

FIG. 3. Scattering on an empty cavity with phase noise. (Main)
Average photon number in the ingoing and outgoing modes and
the flux Iout (in units of γ) from the final virtual cavity as
functions of time. (Inset) Wigner function of the outgoing mode
at the final time γt ¼ 10 with field quadratures ReðhâviÞ and
ImðhâviÞ shown along the x and y axes, respectively. The circle
illustrates the phase space location and width of the initial
coherent state in the incoming mode uðtÞ. Results are provided
for the modes uðtÞ and vðtÞ shown in the upper panel of Fig. 2 and
for an incident coherent state jα ¼ 2i and τjit ¼ γ−1.
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guðtÞ ¼
ffiffiffi
Γ

p
ΘðtÞ and gvðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ=ðeΓt − 1Þ

p
ΘðtÞ. For an

incident one-photon Fock state, for which the optimal value
is Γ ¼ γ=0.36, the interaction with the excited atom causes
the outgoing mode vðtÞ to first acquire a one-photon
component, which is gradually replaced by a two-photon
component with a final population of 0.97 (see Fig. 4). This
confirms that stimulated emission has indeed occurred, but
due to a minute mode mismatch, around 0.07 photons
(¼ R

dtIout) is lost to orthogonal modes.
As a final example, we apply our theory to a recent

experiment by Hacker et al. [36], where an atom with two
ground states j↓i and j↑i and one excited state jei is placed
inside a cavity with an out-coupling γ. The transition
j↑i ↔ jei is strongly coupled to the cavity mode ĉ by a
Hamiltonian Ĥs ¼ gðj↑ihejĉ† þ jeih↑jĉÞ, and an incoming
pulse, prepared in a coherent state jαi, is reflected with or
without a phase shift, depending on the state of the atom.
If the atom is prepared in a superposition ðj↓i þ j↑iÞ= ffiffiffi

2
p

,
one should thus expect the outgoing light pulse to occupy a
Schrödinger-cat entangled state with the atom [37,38]

jcati ¼ 1ffiffiffi
2

p ðj↑ijαi þ j↓ij − αiÞ: ð8Þ

This is verified by our formalism in Fig. 5 where for α ¼
1.4 we see a 0.98 and for α ¼ 2 a 0.96 fidelity with the cat
state (8) at the final time, if we assume perfect reflection of
a Gaussian mode vðtÞ ¼ uðtÞ centered at the time 3 μs. In
realistic settings and indeed in Ref. [36], the fidelity is
hampered by atomic decay at a rate Γ and leakage of the
cavity into other channels at a rate κoc, implying two
additional decoherence channels, L̂1 ¼

ffiffiffi
Γ

p j↑ijei and L̂2 ¼ffiffiffiffiffiffi
κoc

p
ĉ in Eq. (4), as well as imperfections in the matching

of the recorded output mode with the actual signal. The full
curve in Fig. 5 shows how these effects lower the fidelity to
0.72 for α ¼ 1.4, while a larger cat state with α ¼ 2 suffers
more severely, yielding a fidelity of only 0.56. The Wigner
functions plotted at the final time illustrate, however, that
despite the imperfections, the characteristic signature of a

Schrödinger-cat state emerges in the output pulse, post-
selected on the atomic state. Parameters and details con-
cerning the Wigner functions are given in the figure
caption.
Finding the optimal output mode(s).—Our theory per-

mits evaluation of the quantum state content of any desired
output field mode, and as our examples illustrate, an ill-
chosen output mode presents a loss and an impediment to
retrieve the desired quantum state. We propose to identify
the optimal mode function vðtÞ by first calculating the
emitter autocorrelation function gð1Þðt; t0Þ ¼ hL̂†

sðtÞL̂sðt0Þi,
where L̂sðtÞ ¼ guðtÞâuðtÞ þ ffiffiffi

γ
p

ĉðtÞ. This calculation is
possible by application of the quantum regression theorem
[23,39] to the cascaded master equation of the input
cavity and quantum system. If the emission occurs into
a single mode, the correlation function factorizes and
gð1Þðt; t0Þ ∝ v�ðtÞvðt0Þ, while in the general case, an expan-
sion gð1Þðt; t0Þ ¼ P

iniv
�
i ðtÞviðt0Þ may be used to identify a

few dominant modes with mean photon numbers ni for
which the output quantum state can be calculated by a few-
mode extension of our theory.
In the Supplemental Material [30], we describe a

generalization of our theory that allows a full quantum
description of multiple output and input modes. This is
achieved by including additional virtual cavities before and
after the quantum scatterer in a cascaded fashion.
Outlook.—The formalism presented in this Letter pro-

vides, in a straightforward manner, a full quantum descrip-
tion of a light pulse reflected by a quantum system into one
or more distorted modes. Our theory applies equally well to
light and other (dispersion-free) carriers of quantum states,
such as microwaves and surface acoustic waves, considered
in recent experiments [13,16,36,40–45] and experimental
proposals [12,15,46–51].
We illustrated our theory by the solution of the cascaded

master equation for the input and output field Fock space

FIG. 4. Stimulated emission. The figure shows the time
evolution of the populations in the one-photon components of
the incoming pulse, the excited state of the atomic emitter, and the
one- and two-photon components of the outgoing pulse. The
dotted curve shows the number of excitations γ−1

R
t
0 dtIout lost

into other modes.

FIG. 5. Creation of a Schrödinger cat. Results are shown for
α ¼ 1.4 and 2.0 and assume the parameters given in Ref. [36],
ðg; γ;Γ; κocÞ ¼ 2π × ð15.6; 4.6; 6.0; 0.4Þ MHz. (Left) Fidelity
with the state (8) as a function of time. For comparison, we show
also the fidelity, assuming ideal conditions with no decoherence
(Γ ¼ κoc ¼ 0). (Color plots)Wigner function of the outgoing pulse
after a π=2 spin rotation and postselection on detection of the atom
in the state j↓i. According to Eq. (8), this procedure should ideally
produce an even cat state, ðjαi þ j − αiÞ= ffiffiffi

2
p

in the outgoingmode.
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densitymatrices, but the theorymay also employHeisenberg
picture and phase space approaches. Similarly, quantum
trajectory analyses of heralded or conditional dynamics have
been proposed [17,20,27,52,53] and follow effortlessly from
our formalism.
We recall that the time-dependent coupling to input and

output mode cavities is a purely theoretical construction to
arrive at our simple formalism; no such couplings need be
implemented in experiments. The chiral coupling and spatial
separation of input and output fields in Fig. 1 may be
achieved by various means for single-sided cavity systems,
while two-sided cavities should be described by two
(reflected and transmitted) outputmodes, andmore complex
interferometric setups with multiple input and output ports
may explore an even larger number of modes [54].
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F. Santos, and A. Auffèves, Optimal irreversible stimulated
emission, New J. Phys. 14, 083029 (2012).

[36] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li,
and G. Rempe, Deterministic creation of entangled atom-
light Schrödinger-cat states, Nat. Photonics 13, 110 (2019).

[37] L.-M. Duan and H. J. Kimble, Scalable Photonic Quantum
Computation Through Cavity-Assisted Interactions, Phys.
Rev. Lett. 92, 127902 (2004).

[38] A. Reiserer and G. Rempe, Cavity-based quantum networks
with single atoms and optical photons, Rev. Mod. Phys. 87,
1379 (2015).

[39] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press on Demand,
Oxford, England, 2002).

[40] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Photon blockade in an optical
cavity with one trapped atom, Nature (London) 436, 87
(2005).

[41] I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H.
Pinkse, K. Murr, and G. Rempe, Nonlinear spectroscopy of
photons bound to one atom, Nat. Phys. 4, 382 (2008).

[42] N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J.
Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner,
Heralded single-photon absorption by a single atom, Nat.
Phys. 7, 17 (2011).

[43] H. Goto, Z. Lin, T. Yamamoto, and Y. Nakamura, On-
demand generation of traveling cat states using a parametric
oscillator, Phys. Rev. A 99, 023838 (2019).

[44] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou,
P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin,
L. Jiang et al., On-demand quantum state transfer and
entanglement between remote microwave cavity memories,
Nat. Phys. 14, 705 (2018).

[45] K. J. Satzinger, Y. P. Zhong, H.-S. Chang, G. A. Peairs, A.
Bienfait, M.-H. Chou, A. Y. Cleland, C. R. Conner, É.
Dumur, J. Grebel et al., Quantum control of surface
acoustic-wave phonons, Nature (London) 563, 661 (2018).

[46] S. Rosenblum, S. Parkins, and B. Dayan, Photon routing in
cavity QED: Beyond the fundamental limit of photon
blockade, Phys. Rev. A 84, 033854 (2011).

[47] J. Gea-Banacloche and W. Wilson, Photon subtraction and
addition by a three-level atom in an optical cavity, Phys.
Rev. A 88, 033832 (2013).

[48] S. R. Sathyamoorthy, L. Tornberg, Anton F. Kockum, Ben
Q. Baragiola, Joshua Combes, C. M. Wilson, Thomas M.
Stace, and G. Johansson, Quantum Nondemolition Detec-
tion of a Propagating Microwave Photon, Phys. Rev. Lett.
112, 093601 (2014).

[49] B. Vermersch, P.-O. Guimond, H. Pichler, and P. Zoller,
Quantum State Transfer via Noisy Photonic and Phononic
Waveguides, Phys. Rev. Lett. 118, 133601 (2017).

[50] Z.-L. Xiang, M. Zhang, L. Jiang, and P. Rabl, Intracity
Quantum Communication via Thermal Microwave
Networks, Phys. Rev. X 7, 011035 (2017).

[51] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K.
Vandersypen, M. D. Lukin, and J. I. Cirac, Universal Quan-
tum Transducers Based on Surface Acoustic Waves, Phys.
Rev. X 5, 031031 (2015).

[52] B. Q. Baragiola and J. Combes, Quantum trajectories for
propagating Fock states, Phys. Rev. A 96, 023819 (2017).

[53] J. E. Gough, M. R. James, and H. I. Nurdin, Quantum
trajectories for a class of continuous matrix product input
states, New J. Phys. 16, 075008 (2014).

[54] The elimination of propagation segments assumes unidi-
rectional (chiral) coupling of the cascaded components,
while bidirectional propagation of light with sizeable delays
yields non-Markovian effects [P. Lodahl, S. Mahmoodian,
S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H.
Pichler, and P. Zoller, Chiral quantum optics, Nature
(London) 541, 473 (2017)].

Correction: Equations (5) and (6) contained minor errors and
have been fixed. Related Eqs. (S1) and (S2) in the Supplemental
Material have also been fixed and the new file has been uploaded.

PHYSICAL REVIEW LETTERS 123, 123604 (2019)

123604-6

https://doi.org/10.1080/23746149.2017.1343097
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.123604
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.85.013844
https://doi.org/10.1103/PhysRevA.85.013844
https://doi.org/10.1364/OSAC.1.000772
https://doi.org/10.1088/1367-2630/14/8/083029
https://doi.org/10.1038/s41566-018-0339-5
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nphys940
https://doi.org/10.1038/nphys1805
https://doi.org/10.1038/nphys1805
https://doi.org/10.1103/PhysRevA.99.023838
https://doi.org/10.1038/s41567-018-0115-y
https://doi.org/10.1038/s41586-018-0719-5
https://doi.org/10.1103/PhysRevA.84.033854
https://doi.org/10.1103/PhysRevA.88.033832
https://doi.org/10.1103/PhysRevA.88.033832
https://doi.org/10.1103/PhysRevLett.112.093601
https://doi.org/10.1103/PhysRevLett.112.093601
https://doi.org/10.1103/PhysRevLett.118.133601
https://doi.org/10.1103/PhysRevX.7.011035
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevA.96.023819
https://doi.org/10.1088/1367-2630/16/7/075008
https://doi.org/10.1038/nature21037
https://doi.org/10.1038/nature21037

