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We propose a hierarchical approach to testing general relativity with multiple gravitational wave
detections. Unlike existing strategies, our method does not assume that parameters quantifying deviations
from general relativity are either common or completely unrelated across all sources. We instead assume
that these parameters follow some underlying distribution, which we parametrize and constrain. This can be
then compared to the distribution expected from general relativity, i.e., no deviation in any of the events. We
demonstrate that our method is robust to measurement uncertainties and can be applied to theories of
gravity where the parameters beyond general relativity are related to each other, as generally expected. Our
method contains the two extremes of common and unrelated parameters as limiting cases. We apply the
hierarchical model to the population of 10 binary black hole systems so far detected by LIGO and Virgo.
We do this for a parametrized test of gravitational wave generation, by modeling the population distribution
of beyond-general-relativity parameters with a Gaussian distribution. We compute the mean and the
variance of the population and show that both are consistent with general relativity for all parameters we
consider. In the best case, we find that the population properties of the existing binary signals are consistent
with general relativity at the ∼1% level. This hierarchical approach subsumes and extends existing
methodologies and is more robust at revealing potential subtle deviations from general relativity with
increasing number of detections.
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Introduction.—The ever-increasing number of binary
coalescences [1] detected by LIGO [2] and Virgo [3] has
opened up avenues for rich new tests of general relativity
(GR) [4–9]. This includes precision probes of strong-field
orbital dynamics, the nature of the remnant object, and the
properties of gravitational-wave (GW) propagation [4,9].
With the new data, however, comes the problem of properly
interpreting constraints in a way that does not apply only to
specific modified theories of gravity and that is not biased
by hidden assumptions [9,10].
In particular, there is an outstanding challenge to

adequately combine information from different GW obser-
vations into a single statement about agreement with GR.
Existing approaches [6,11–19] rely on strong assumptions
about the space of potential GRdeviations and their effect on
the observable events, rendering them too restrictive [10].As
a result, wemight soon have awealth of measurements from
different techniques and events but no cohesive picture that
brings them together.
In this Letter, we present a flexible and robust solution to

this problem by framing it in the language of hierarchical
inference. The result is an easy-to-interpret null test of GR
that can incorporate multiple measurements from different
events, without strong restrictions to specific theories of
gravity or subclasses of events, and without the need to

explicitly weigh events based on their significance. We
demonstrate that our method can produce strong combined
constraints on deviations from GR. If deviations are
present, it can detect them even if they affect our mea-
surements nontrivially, e.g., by altering waveforms in ways
that depend on the properties of each source. We apply our
method to GW detections from the GWTC–1 catalog of
compact binaries [1,9], using publicly available posterior
samples for parameters controlling waveform deviations
from the GR prediction [20]. We obtain joint constraints on
deviations from GR that apply to generic theories of gravity
and find the data to be in agreement with Einstein’s theory
up to the ∼1% level.
Method.—Waveform models for quasicircular compact

binaries so far exist only within GR. They are generically
parametrized by 15 parameters that describe the signal
observed by an interferometric detector: componentmasses,
component spins, location, orientation, and phase. To date
no parametrized waveform model exists that describes the
inspiral, merger, and ringdown of generic binaries in any
beyond-GR theory. For this reason, and guided by the desire
for model-idependent tests that do not conform to specific
theories, many studies are based on parametrized deviations
away from the GR waveform. In these tests, new degrees of
freedom δp̂i are introduced, with δp̂i ¼ 0 corresponding to
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GR. These parameters are introduced to modify different
aspects of the waveform’s frequency or amplitude evolution
and, together with the 15 GR parameters, define a gener-
alized waveform model. For more details on these para-
metric tests, see the SupplementalMaterial [21], Ref. [9] and
references therein.
Unless they are somehow fixed to a constant by the true

theory of gravity, we should generally expect the δp̂i’s to
vary across different GW events. For instance, the GW
deformation could depend on the binary mass ratio or other
properties of the system, and different combinations of δp̂i ’s
could come into play under different circumstances.Without
assuming a theory of gravity, it is not possible to constrain
the functional form of the δp̂i’s, making it difficult to
combine measurements from different events [9,10]. To
tackle this problem, we follow [10] and employ a hierar-
chical formalism wherein we assume that the true value of
the beyond-GR parameters for each of the events is drawn
from some common unknown distribution [22]. If there are
P parameters measured forN events, this amounts to P × N

random variables, which we denote δp̂ðjÞ
i for i ¼ 1;…; P

and j ¼ 1;…; N. Then each set of N variables correspond-
ing to a given δp̂i should follow a shared distribution,
implicitly determined by the underlying theory of gravity
and the source population properties. The goal of the
hierarchical approach (vividly named “extreme deconvolu-
tion” by some [23]) is to infer the properties of the under-
lying distributions based on imperfect measurements from a
population of events.
The first step is to select a functional form for the

distribution of δp̂i, which is in principle nontrivial. Given
the small number of detections, here we only attempt to
measure its mean μi and standard deviation σi. Higher
moments, such as the skewness, could become measurable
with an increasing number of detections. In our case, and
under a minimum-information assumption, we can thus
model the population distribution with a Gaussian; i.e., we
will take the population distribution to be δp̂i ∼N ðμi; σiÞ.
A more complex function could be chosen as needed, with
little impact on the method. This potentially includes
explicitly considering correlations among different δp̂i’s,
although we demonstrate below that this is not strictly
necessary.
With the above choice of likelihood and appropriate

values of σi, our method reduces to traditional nonhier-
archical approaches for combining events [10]. Setting
σi ¼ 0 amounts to assuming that all systems share the same

beyond-GR parameter δp̂ðjÞ
i ¼ μi. The results are equiv-

alent to multiplying the likelihood functions of the δp̂ðjÞ
i for

all detections j. On the opposite extreme, letting σi → ∞,

the δp̂ðjÞ
i are drawn from an effectively flat distribution and,

as a result, measurement of one does not inform the others.
This corresponds to testing a theory of gravity in which
each system is described by its own fundamental constant

[10]. The results are equivalent to multiplying the Bayes
factors from individual detections (assuming that a flat
prior is imposed on each beyond-GR parameter). However,
both these assumptions can lead to incorrect conclusions if
they do not apply to the true theory of gravity [9,10].
In its general form, our hierarchical method is not limited

by those assumptions and provides a robust way of
detecting a deviation from GR even when the non-GR
parameters are not trivially related to each other. If GR is
correct, then both hyperparameters, μi and σi, are expected
to be consistent with zero. If we find a nonzero μi, this is an
obvious deviation from GR or a systematic error in the
analysis of one or several of the events under consideration.

Alternately, the true δp̂ðjÞ
i could be symmetrically distrib-

uted around μi ¼ 0. In this case, the inferred μi will be
consistent with 0, but the σi posterior will peak away from

zero, signaling that the scatter in δp̂ðjÞ
i is larger than

expected from statistical measurement errors, again
revealing a beyond-GR effect (or modeling error).
Simulation: GR is right.—Given the long history of GR’s

experimental success [24], it is unavoidable to imagine that
GWobservations may also fail to reveal any shortcomings of
the theory. Accordingly, we begin by demonstrating our
methodon simulated signals that obeyGR.For simplicity,we
take the measurement of each beyond-GR parameter to be

summarized by a Gaussian likelihood with mean μ̃ðjÞi and

standard deviation σ̃ðjÞi , i.e.,pðdataðjÞjδp̂ðjÞ
i Þ ¼ N ðμ̃ðjÞi ; σ̃ðjÞi Þ.

Such a likelihood is hardly realistic, especially for weak
signals, but it suffices to illustrate our method and its scaling

with the number of detections.Note that μ̃ðjÞi and σ̃ðjÞi describe
the idealized measurement of parameter δp̂i in the jth event,
while μi and σi define the distribution of true values of δp̂i
across events.
We simulate a population of N observations as follows:

first, we assign a random signal-to-noise ratio (SNR) to
each event j with the expected probability SNRðjÞ ∼
1=SNR4 [25]; then, for each δp̂ðjÞ

i , we assign a value of

σ̃ðjÞi proportional to 1=SNRðjÞ; finally, we choose a value of
μ̃ðjÞi consistent with σ̃ðjÞi by drawing it from N ð0; σ̃ðjÞi Þ,
mimicking the expected scatter due to noise in the detector.
For concreteness, we consider only three non-GR param-
eters δφ̂i, i ¼ 0, 1, 2. These are defined as in [9] and are
related to the parametrized post-Einsteinian (ppE) frame-
work of [26], as discussed in the Supplemental Material

[21]. We set the overall scale of the σ̃ðjÞi ’s based on the
uncertainty of measurements from GW150914 data,
namely 68%-level widths of 0.06, 0.3, and 0.2 for δφ̂0,
δφ̂1, and δφ̂2, respectively [20].
Figure 1 shows the projected constraints on μi (top) and

σi (bottom) for the ppE-like coefficients δφ̂0, δφ̂1, and δφ̂2

as the number of detections grows. Colored bands represent
the 1σ variation over 200 simulated populations. The
dashed line is proportional to 1=

ffiffiffiffi

N
p

and demonstrates
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that bounds scale with the number of detections as
expected. Our method improves with increasing number
of signals at a rate similar to the simple approach of
multiplying the likelihoods, in spite of the presence of an
additional parameter, σi. This is because μi and σi are
uncorrelated, so we can safely add σi to our model without
affecting the 1=

ffiffiffiffi

N
p

scaling of μi and vice versa.
Simulation: GR is wrong.—We now turn to the tantaliz-

ing scenario that GR disagrees with experiment. In such a
case, we should generally expect the deviation from GR to
manifest itself in multiple δp̂i’s, even if it intrinsically
occurs at a specific post-Newtonian (PN) order [17,27].
This is because the phenomenological effect of modifica-
tions at different PN orders are not necessarily orthogonal,
introducing degeneracies in our measurement. Con-
sequently, a deviation from GR affecting a given δp̂i could
be measured through the μi and σi of multiple parameters,
not just the one that is actually modified by the theory.
To demonstrate this effect, we construct a simple mock

alternative theory of gravity that differs from GR at the 1PN
order, affecting all binaries equally. This intrinsic waveform
correction is independent of source parameters, making it
amenable to multiplication of the individual parameter
likelihoods. Generally, of course, this is not the case
[5,28]. Even with this simplifying assumption, the mea-
sured δp̂i’s may vary in a nontrivial way with source
properties as signals with different frequency contents may
be affected by the same deviation differently.
Following [17], we assume that the measured non-GR

parameters δp̂i depend nontrivially on the true values δp̂true
i .

Generally, such relation could always be expressed via some
measurement matrixM, such that δp̂i ¼ Mδp̂true

i , where the
components ofM could depend on the specific properties of
each system. For our example, we again consider the three

ppE-like parameters δp̂i ¼ ðδφ̂0; δφ̂1; δφ̂2Þ and we imagine
δp̂true

i ¼ ð0; 0; 0.1Þ; i.e., the only parameter in which the
modified theory deviates from GR is δφ̂2. As an illustration,
we arbitrarily pick a matrix M that yields δp̂i ¼ ð1.1 − 2q;
0; 0.1Þ, where q is the mass ratio of the system. This is
inspired by the degeneracy between high- and low-order PN
corrections demonstrated in [17]. Quantitative results will be
highly dependent on the truemeasurementmatrix, thoughwe
only wish to demonstrate the qualitative effect here.
We simulate a population of observations by drawing q

uniformly from [0.1, 1] and using those values to produce
the measured parameters δp̂i. To simulate the correspond-
ing posteriors, we draw the event SNRs and add a scatter
due to noise as in the previous section. As a result of the
nontrivial dependence on q, the resulting population of
each δp̂i is not normally distributed. In spite of this, we
demonstrate that our simple Gaussian model can detect the
deviation from GR.
Figure 2 shows the posteriors for μi and σi for a

population of 100 events. As expected, we find that the
posterior for μ2 peaks at the injected value of 0.1 and
excludes GR at the 96% credible level. Additionally, we
find that σ0 is not consistent with GR at the ≳99.99%
credible level. This means that the scatter in δφ̂ðjÞ

0 is too
large to be accounted for by statistical noise. Indeed, part of

the scatter in δφ̂ðjÞ
0 is caused by the deviation from GR. This

illustrates that, even if we did not take δφ̂2 into account, we
would have detected this deviation from GR solely through
the lower PN order coefficient. Additionally, the σ0
posterior is farther from GR than the μ2 one, suggesting
that this deviation could be detected first with a lower
PN-order parameter. We emphasize that these results are
illustrative only: the properties of the posteriors in a real

FIG. 1. Expected behavior of the population hyperparameters
vs number of detections. We show the width of the 90% credible
interval for μi (top) and the 90% upper limit on σi (bottom). In
both panels, we average over 200 population realizations and
shaded regions correspond to 1σ uncertainty. The dotted line
show the mean over populations. The dashed line is proportional
to 1=

ffiffiffiffi

N
p

; the bounds follow the expected scaling with the
number of detections.

FIG. 2. Example hyperparameter posteriors when GR is not the
correct theory of gravity. The deviation is only present at

δp̂ðjÞ
2 ¼ 0.1, but it is recovered both in μ2 and σ0. All other

hyperparameters are consistent with GR.
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analysis will depend on the nature of the true measurement
matrix, which is generally unknown.
Real events.—We now apply our hierarchical model to

the confident binary black hole detections presented in
GWTC–1 [1]. As a starting point, we use posterior samples
for all δp̂i parameters from [9,20], obtained with the
IMRPHENOMPV2 waveform model [29,30]. This study
did not perform both sets of tests on all detected signals,
but rather imposed certain thresholds on the SNR of the
signals to determine whether to look for deviations in the
inspiral or postinspiral regime, or both. As a result, five
signals were analyzed for inspiral deviations and nine for
postinspiral ones. See [9] for details.
As demonstrated in the previous sections, for each ppE-

like coefficient δp̂i, we obtain a posterior distribution for
the corresponding hyperparameters μi and σi. We find that
the population of the analyzed BBHs is consistent with GR
both in terms of μi and σi for all beyond-GR parameters.
All μi posteriors are consistent with 0 at the 0.5σ level or
better, while all σi posteriors peak at 0. This is a novel test,
sensitive to generic beyond-GR effects in a population of
detections. With more signals we expect this analysis to
either result in improved bounds (Fig. 1), or to reveal
deviations from the ensemble properties expected from
binaries in GR (Fig. 2).
From the hyperparameter posteriors, we also compute the

inferred population distributions for the δp̂i’s, formally
defined in Eq. (5) of the Supplemental Material [21] and
plotted in Fig. 3. These distributions, dN=dðδp̂iÞ, represent
our best knowledge of the population from which the

allowed deviations from GR, δp̂ðjÞ
i , were drawn for each

binary black hole signal. Because all of these distributions
contain zero with high probability, their width indicates the
level to which we can constrain our measurements of the
ppE-like coefficients to agree with GR. In the best case, for
δφ̂−2, we find consistency with GR at the ∼1% level with
68% credibility. In the future, and assuming GR is correct,

we should find that the distributions tend to a δ function at
δp̂i ¼ 0 aswe accumulatemore observations (cf. Fig. 1).We
emphasize that, unlike Fig. 3 in [9], Fig. 3 here does not show
the inferred posterior on the ppE-like parameters assuming
all signals share the same value. Instead, Fig. 3 summarizes
our inference for the distributions fromwhich the potentially
unequal ppE-like parameters of each signalwere drawn [31].
These results are subject to the thresholds imposed in [9]

that determine which GW events are subject to each test.
They would thus be vulnerable to the same potential
selection effects. This includes the requirement that signals
be sufficiently loud and akin to GR, such that they are
detectable by matched-filtering procedures looking for GR
signals. Reference [9] argues that both types of potential
selection effects are partially mitigated by the fact that more
generic searches are also employed alongside matched-
filter ones. With this caveat in mind, we find no evidence of
any deviation from GR.
Conclusions.—We use a hierarchical approach to test GR

with GWs by assuming that beyond-GR parameters in each
event are drawn froma commonunderlying distribution. This
approach is flexible and powerful, as it can encompass
generic population distributions even if the chosen para-
metrization is inaccurate. It can trivially incorporate future
detections and can be applied to different kinds of tests ofGR,
including searches for modified dispersion relations [7,32] or
inspiral-merger-ringdown consistency checks [16,18]. We
apply this method to the current 10 confident binary black
hole detections [1], measuring posterior distributions for the
mean and standard deviation of the population of ppE-like
parameters δp̂i [20]. This is a conceptually new test that
examines the ensemble properties of GW signals rather than
the properties of individual events; we find the set of
measurements to be consistent with GR (Fig. 3).
Parametrized tests, such as the ones studied here, are

powerful probes of beyond-GR effects. Yet, it has long
been appreciated that their interpretation demands caution:

FIG. 3. The inferred population distribution dN=dðδp̂iÞ for the beyond-GR parameters δp̂i’s given the 10 confirmed binary black hole
signals observed to date. (The scale of δφ̂−2 has been expanded by a factor of 20.) All population distributions are consistent with
δp̂i ¼ 0, the GR prediction. With more observed signals, and under the assumption that they will obey GR, the population distributions
are expected to become more narrowly centered around the origin, approximating a δ function. These distributions are defined in Eq. (5)
of the Supplemental Material [21].
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correlations between parameters make it necessary to have
a consistent model to characterize a detected deviation. Our
method provides a framework to execute a null test of GR
with several detections, largely without the need for
specific models of potential deviations. It improves with
increasing number of signals at a rate similar to simpler
approaches (Fig. 1). Furthermore, hierarchical methods
could exploit degeneracies in our measurements to detect
otherwise inaccessible deviations from GR, e.g., because
they intrinsically occur at a higher PN order than can be
directly probed (Fig. 2).
The framework presented here is not restricted to tests of

GR with GWs, but can be generalized to include informa-
tion from other observations. For example, the measured
likelihood for δφ̂−2 from GWs could be combined with
corresponding constraints from binary pulsar measure-
ments. Our hierarchical method not only unifies the signals
seen by ground-based detectors, but also offers a way to
consider multiple tests of GR simultaneously.
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Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[31] This is not the same as the most likely such distribution,
which by construction would be a Gaussian with mean and
variance given by the peak of the posterior on μi and σi.
Rather, Fig. 3 marginalizes over μi and σi, which is why the
dN=dðδp̂iÞ distributions in Fig. 3 are not Gaussians. See
Supplemental Material at [21] for details.

[32] S. Mirshekari, N. Yunes, and C. M. Will, Phys. Rev. D 85,
024041 (2012).

[33] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B.
Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li,
and A. Riddell, J. Stat. Software, Articles, 76, 1 (2017).

[34] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

PHYSICAL REVIEW LETTERS 123, 121101 (2019)

121101-5

http://arXiv.org/abs/1811.12907
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.123.011102
http://arXiv.org/abs/1903.04467
https://doi.org/10.1103/PhysRevD.99.124044
https://doi.org/10.1103/PhysRevD.99.124044
https://doi.org/10.1103/PhysRevD.85.082003
https://doi.org/10.1088/1742-6596/363/1/012028
https://doi.org/10.1103/PhysRevD.89.082001
https://doi.org/10.1103/PhysRevD.90.064009
https://doi.org/10.1103/PhysRevD.83.082002
https://doi.org/10.1103/PhysRevD.83.082002
https://doi.org/10.1103/PhysRevD.94.021101
https://doi.org/10.1103/PhysRevD.97.044033
https://doi.org/10.1088/1361-6382/aa972e
https://doi.org/10.1088/1361-6382/aa972e
https://doi.org/10.1103/PhysRevD.98.084038
https://doi.org/10.1103/PhysRevD.98.084038
https://dcc.ligo.org/LIGO-P1900087/public
https://dcc.ligo.org/LIGO-P1900087/public
https://dcc.ligo.org/LIGO-P1900087/public
https://dcc.ligo.org/LIGO-P1900087/public
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.121101
https://doi.org/10.1063/1.1835214
https://doi.org/10.1088/0004-637X/700/2/1794
https://doi.org/10.1088/0004-637X/700/2/1794
https://doi.org/10.12942/lrr-2014-4
http://arXiv.org/abs/1409.0522
https://doi.org/10.1103/PhysRevD.80.122003
https://doi.org/10.1103/PhysRevD.87.102001
https://doi.org/10.1103/PhysRevD.87.102001
https://doi.org/10.1103/PhysRevD.84.062003
https://doi.org/10.1103/PhysRevD.84.062003
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.85.024041
https://doi.org/10.1103/PhysRevD.85.024041
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1109/MCSE.2007.55

