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We report on an experimental study of the Lipkin-Meshkov-Glick model of quantum spins interacting at
infinite range in a transverse magnetic field, which exhibits a ferromagnetic phase transition in the
thermodynamic limit. We use dysprosium atoms of electronic spin J ¼ 8, subjected to a quadratic Zeeman
light shift, to simulate 2J ¼ 16 interacting spins 1=2. We probe the system microscopically using single
magnetic sublevel resolution, giving access to the spin projection parity, which is the collective observable
characterizing the underlying Z2 symmetry. We measure the thermodynamic properties and dynamical
response of the system, and we study the quantum critical behavior around the transition point. In the
ferromagnetic phase, we achieve coherent tunneling between symmetry-broken states, and we test the link
between symmetry breaking and the appearance of a finite order parameter.
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From complex quantum materials such as cuprate super-
conductors to simple spin models, many-body systems
close to a quantum critical point exhibit distinct properties
driven by quantum fluctuations [1]. Some features, such as
the slowing down of relaxation times, can be probed via
macroscopic observables. However, revealing specifically
quantum properties (e.g., many-body quantum entangle-
ment [2]) remains challenging. The recent development of
highly controlled quantum systems of mesoscopic size
(such as ion crystals [3], ultracold gases [4], Rydberg atom
arrays [5], or interacting photons [6]) allows for a micro-
scopic characterization of collective quantum properties
[7], e.g., the full density matrix [6], entanglement entropy
[8], or nonlocal string order [9]. This degree of control
could be used to investigate fundamental aspects of
quantum phase transitions, such as the link between the
breaking of an underlying symmetry and the onset of a
nonzero-order parameter [10]. This connection cannot be
tested in macroscopic systems because superselection rules
forbid large-size quantum superpositions [11], making
spontaneous symmetry breaking unavoidable [12].
In this Letter, we experimentally characterize at the

microscopic level the Lipkin-Meshkov-Glick model
(LMGM) consisting of N quantum spins with infinite-
range Ising interactions in a transverse field. This model is
applicable to nuclear systems [13,14], large-spin molecules
[15], trapped ions [16,17], and two-mode [18–20] or spinor
[21] Bose-Einstein condensates. Our study is based on the
equivalence between the electronic spin J ¼ 8 of dyspro-
sium atoms and a set of N ¼ 16 spins 1=2 symmetric upon
exchange [22], with Ising interactions simulated via a light-
induced quadratic Zeeman shift [23]. In the thermodynamic
limit (TL), the LMGM exhibits a ferromagnetic phase
transition (see Fig. 1) characterized by spontaneous

breaking of a Z2 symmetry—the parity of the total z spin
projection. We measure a crossover between paramagnetic
and ferromagnetic behaviors, which are separated by a
quantum critical regime where we observe nonclassical
behavior and a minimum of the energy gap [24,25]. A
specific asset of our setup is the direct access to the
quantum state parity, which is a collective observable
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FIG. 1. (a) Scheme of experiment, based on laser-induced
dynamics of the electronic spin of dysprosium atoms (quadratic
light shift of ∝ −λJ2x) in the presence of a magnetic field (Zeeman
coupling ωzJz). (b), (c), and (d) Classical energy landscapes on
the southern hemisphere of the generalized Bloch sphere for
λ ¼ 0, ωz, and 1.5ωz, respectively. (e) Finite-size phase diagram,
showing the spin pair correlator hσ1xσ2xi, with a ferromagnetic
phase in the thermodynamic limit for λ > ωz (green line). For a
finite N, the phase transition is smoothened over a quantum
critical region (dashed red area).
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hidden in macroscopic systems such as large ensembles of
spins 1=2. We show that the Z2 symmetry breaking is
directly related to the onset of a nonzero-order parameter.
The LMGM is described by the Hamiltonian

H ¼ −
ℏλ

4ðN − 1Þ
X

1≤i≠j≤N
σixσjx þ

ℏωz

2

X
1≤i≤N

σiz: ð1Þ

Here, ℏσiu=2 denotes the projection of the spin i along u
(1 ≤ i ≤ N), the factor 1=ðN − 1Þ ensures extensivity of the
energy for large N [26], and we restrict ourselves to
ferromagnetic interactions of λ > 0. Although the exact
ground state is not a product state [27], thermodynamic
quantities are well described by the classical mean-field
theory in the TL because each spin interacts with the sum of
all other spins [24]. The corresponding classical energy
functionals, parametrized by the mean spin orientation, are
shown in Figs. 1(b)–1(d) for λ ¼ 0, ωz, and 1.5ωz. They
reveal the occurrence of a quantum phase transition
between a paramagnetic phase for λ < ωz and a ferromag-
netic phase for λ > ωz, for which the system exhibits two
degenerate ground states with nonzero-order parameter
hσ1xi ≠ 0. Furthermore, the Z2 symmetry, associated to
the conservation of parity,

Pz ¼
YN
i¼1

σi;z;

is spontaneously broken at the transition point. Introducing
the collective spin

J ¼ 1

2

X
i

σi;

the Hamiltonian [Eq. (1)] can be recast (up to an overall
energy shift) as

H ¼ −
ℏλ

2J − 1
J2x þ ℏωzJz: ð2Þ

For ferromagnetic interactions, its lowest-energy states are
permutationally symmetric and their collective spin has the
maximal length of J ¼ N=2.
In this work, we study the nonlinear dynamics of the

electronic spin of J ¼ 8 of 162Dy atoms, simulating a
ferromagnetic LMGM with N ¼ 16 spins 1=2. We use
ultracold samples of 1.3ð3Þ × 105 atoms, which are initially
held in an optical dipole trap at a temperature of
T ≃ 1.1ð1Þ μK. The atomic spin is initially polarized in
the ground state j − Jiz, under a magnetic field B ¼ Bẑ
with B ¼ 114ð1Þ mG, corresponding to a Larmor fre-
quency of ωz ¼ 2π × 198ð2Þ kHz. In this state, the N
elementary spins are antialigned with the magnetic field,
corresponding to a paramagnetic state. We then switch off
the trap before applying a laser beam close to the 626 nm

optical transition, coupling the spin J to an excited
electronic state of spin J0 ¼ 9. Given the transition line-
width of Γ ≃ 0.86 μs−1 and the detuning from resonance of
≃20 GHz, we expect negligible incoherent Rayleigh scat-
tering on the timescale of the experiment. The light is
linearly polarized along x, producing a quadratic Zeeman
shift proportional to J2x [23], up to a spin-independent
energy shift that does not influence the spin dynamics. The
laser beam waist of w ¼ 50 μm is large enough to ensure
uniform intensity over the atomic sample (rms size of
σ ≃ 5 μm). For the maximum available light power
(P ≃ 1W), we reach a ferromagnetic coupling of λ ≃ 4ωz
deep in the ferromagnetic phase. In the following, the
coupling λ is adjusted via the light intensity on the atoms.
After a typical evolution time of t ∼ 100 μs, we switch off
the light beam and apply time-dependent magnetic fields to
perform arbitrary spin rotations before making a projection
measurement along z. Combining rotation and projection
gives us access to the spin projection probabilities ofΠmðn̂Þ
(−J ≤ m ≤ J) along any direction n̂ [28].
We first investigate the properties of the ground state of

the LMGM. We start with all atoms in the state j − Jiz,
which is the (paramagnetic) ground state for λ ¼ 0. We then
slowly ramp the light coupling from zero up to a final value
λ using a linear ramp of speed _λ ≃ 0.015ω2

z , for which we
expect quasiadiabatic evolution [29]. The measured spin
projection probabilities Πmðn̂Þ (n̂ ¼ x̂; ŷ; ẑ) are shown in
Figs. 2(a), 2(c), and 2(e). We first consider the occurrence
of a ferromagnetic ground state by measuring the order
parameter hσ1xi. We show in Fig. 2(a) the single-shot
projections Πmðx̂Þ measured for various couplings λ. For
small λ, we find a single-peak distribution centered on zero,
which is consistent with the state j − Jiz projected along x̂.
For λ≳ ωz, we observe a bifurcation towards a double-peak
distribution, which is consistent with population of the two
broken-symmetry states: each with an order parameter of
hσ1xi ≠ 0. As the distributions remain globally symmetric,
the system does not seem to choose a single broken state.
With our measurement being averaged over many atoms,
we cannot exclude a situation with almost half of the atoms
in each broken state, e.g., organized in unresolved spin
domains. This scenario is invalidated by a direct measure-
ment of the mean parity pz ≡ hPzi that remains close to
unity for all interaction strengths [see Fig. 2(f)]. Such an
absence of symmetry breaking is, in fact, expected for a
finite-size system, for which the ground state remains
nondegenerate, as will be discussed later. The ground state
prepared in the ferromagnetic phase exhibits both a large-
spin projection variance along x and a well-defined parity
along z, which is characteristic of a mesoscopic quantum
superposition that is useful for quantum-enhanced metrol-
ogy [33,34].
We now characterize the thermodynamic properties that

are independent of the symmetry breaking itself. We probe
ferromagnetic spin correlations, i.e., the relative alignment
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between spins along x̂ quantified by the correlator M2 ≡
hσ1xσ2xi [24]. We compute it from the second moment
of the measured probabilities Πmðx̂Þ using NþNðN−1Þ
hσ1n̂σ2n̂i¼4hJ2n̂i [35]. As shown in Fig. 2(b), we measure a
smooth increase of M2 as a function of λ, which is
consistent with a crossover between paramagnetic and
ferromagnetic behaviors. We compare our measurements
with various theoretical models: namely, the N ¼ 16
LMGM (blue lines in Fig. 2), the mean-field model
corresponding to the N → ∞ limit (dotted black lines),
and its first finite-N correction close to the critical point, as
will be discussed below (dashed red lines). As shown in
Fig. 2(b), the measured ferromagnetic correlatorM2 agrees
with the N ¼ 16 LMGM for all couplings λ, and it remains
close to the mean-field theory for most values of λ, except
around λ ¼ ωz [29,36]. In the critical regime, the leading
1=N finite-size correction can be simply formulated
because the quantum ground state remains close to the
coherent state j − Jiz such that operators Jx and Jy are
almost canonically conjugated variables with ½Jx; Jy� ¼
iJz ≃ −iJ [37]. This approximation leads to a low-energy
“critical” Hamiltonian [29,38,39]

Hc

ℏωz
¼ −

�
J þ 1

2

�
þ 1

J1=3

�
P2

2
−
ϵX2

2
þ X4

8

�
; ð3Þ

describing the dynamics of a massive particle in a harmonic
plus quartic potential, where ϵ ¼ J2=3ðλ=ωz − 1Þ, X ¼
J−2=3Jx, and P ¼ −J−1=3Jy. This description matches the
textbook Landau picture of a second-order phase transition
evolving from single- to double-well potentials when
crossing the critical point at ϵ ¼ 0 [10]. As plotted in
Fig. 2(b), the universal Hamiltonian [Eq. (3)] is sufficient to
account for the measured deviations to the TL well around
λ ¼ ωz [40].
We also investigated signatures of the phase transition

itself in our finite-size system. First, we measured an
increase of fluctuations of the ferromagnetic correlator
ΔðM2Þ≡ ΔðJ2xÞ=½JðJ − 1

2
Þ�2 around the critical point of

λ ¼ ωz [see inset of Fig. 2(b)]—a generic feature of
continuous phase transitions [41]. More specifically, quan-
tum phase transitions are also associated with the onset of
entanglement in the critical region [1]. A priori, probing
quantum entanglement requires partitioning the electronic
spin J, which is forbidden at low energy but could, in
principle, be achieved using coherent optical transitions
J → J0 [42,43]. Yet, we can indirectly probe entanglement
in our system via spin projection correlations. Indeed,
separable states that are symmetric upon exchange satisfy
hσ1n̂σ2n̂i ¼ hσ1n̂i2 for all projection directions n̂, and thus
can only exhibit positive correlators [35,44]. As shown in
Figs. 2(c) and 2(d), we measure the correlator hσ1yσ2yi and
show that it assumes negative values in a broad range of
interaction strengths [45], which is consistent with entan-
glement and suggests that the phase transition is driven by
quantum (rather than thermal) fluctuations [2,47]. The
measured correlator—including its minimum value—is
consistent with the LMGM prediction for λ < ωz. In the
ferromagnetic phase, the measured correlator significantly
exceeds the expected values, which we attribute to shot-to-
shot variations of the spin rotation parameters used for the y
spin projection due to magnetic field fluctuations.
We now extend our study to the system dynamics by

measuring the energy gap of low-lying excitations. Due to
the Z2 symmetry of the LMGM, the eigenstates can be
divided into two sectors of even and odd parities. The low-
energy dynamics is then governed by two energy gaps,
namely, the “parity” gap ℏδ between opposite-parity
ground states and the “dynamical” gap ℏΔ between the
lowest two energy levels of even parity. In the effective
potential picture, these gaps correspond to the oscillation
frequencies of the dipole (δ) and breathing (Δ) modes. To
excite the breathing mode, we simply increase the ramp
speed _λ used for the state preparation, leading to a diabatic
population of the first excited state of even parity while
keeping the higher states almost unpopulated. We then
measure the time evolution of the second moment hσ1xσ2xi,

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a), (c), and (e) Measured projection probabilities
Πmðn̂Þ for n̂ ¼ x̂, ŷ, and ẑ [Figs. 2(a), 2(c), and 2(e), respectively]
as a function of the interaction strength λ. (b), (d), and
(f) Evolution of the spin pair correlator hσ1xσ2xi [Fig. 2(b)],
its variance [inset of Fig. 2(b)], the correlator hσ1yσ2yi [Fig. 2(d)],
and the mean parity pz [Fig. 2(f)]. Solid blue, dotted black, and
dashed red lines correspond to the LMGM, the classical mean-
field model, and the critical Hamiltonian, respectively. No
averaging is performed in Fig. 2(a). In other panels, all data
are the averages of about five independent measurements. In all
figures, error bars represent the 1-σ statistical uncertainty.
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and we extract its oscillation frequency Δ [see Fig. 3(b)].
To excite the dipole mode, we first prepare the ground state
for a given coupling λ, and we apply a parity-breaking
perturbation using a pulse of the magnetic field along x of
duration t ≃ 3 μs, coupling the ground state to the odd-
parity sector. The amplitude is chosen small enough to only
populate the even- and odd-parity ground states, and the
first moment’s hσ1xi oscillation frequency (δ) is extracted
[see Fig. 3(c)].
The measured parity and dynamical gaps, reported in

Fig. 3(a), agree well with the LMGM. The dynamical gapΔ
exhibits a minimum around the critical point, which is
reminiscent of the closing of the gap in the TL at the
transition point. The parity gap δ decreases when increasing
the coupling λ, which is in analogy with the softening of the
spin dipole mode in quantum systems close to a ferro-
magnetic transition [48,49]. In the paramagnetic phase of
λ≲ 0.5ωz, the dynamical gap Δ remains about twice the
parity gap δ, which is consistent with a picture of non-
interacting excitation quanta [25,37]. At the critical point,
the measured dynamical gap of Δ ¼ 0.91ð5Þωz signifi-
cantly exceeds twice the parity gap of δ ¼ 0.33ð1Þωz,
which is as expected from particle dynamics in a quartic
potential [see Eq. (3) for ϵ ¼ 0]. This nonharmonic
behavior illustrates the generic behavior of quantum critical
systems, for which the low-energy spectra cannot be simply
reduced to noninteracting excitation quanta [1]. The gap
value for λ ¼ ωz is also consistent with the leading finite-
size correction to the mean field Δ=ωz ≃ 1.78=J1=3 ¼ 0.89,
which is valid for J ≫ 1 [24,50,51].
We now focus on the dipole oscillation measurements in

the ferromagnetic phase, where we measure a strong
reduction of the parity gap [see Fig. 4(a)]. The even-
and odd-parity ground states thus become almost degen-
erate, which is a behavior reminiscent of the exact double
degeneracy expected in the TL for λ > ωz. We show, in

Figs. 4(b) and 4(c), the time evolutions of the probability
distributions Πmðx̂Þ during the dipole oscillation in the
paramagnetic [Fig. 4(b)] and ferromagnetic [Fig. 4(c)]
phases. In the paramagnetic phase, the distributions always
exhibit a single peak for which the center smoothly
oscillates around zero. On the contrary, in the ferromag-
netic phase, the distributions exhibit two peaks at positive
or negative large-jmj values, and the dynamics consists of
an oscillation between the peak weights, without signifi-
cantly populating small-jmj states. This qualitatively differ-
ent behavior is well illustrated by the evolution of the most
probable projection m�, which only takes two possible
values ofm� ¼ �6 during the evolution shown in Fig. 4(c).
These maximal projection values are close to the collective
spin projections of hJxi ¼ �5.4ð5Þ of the two mean-field
broken-symmetry states for λ ¼ 1.36ð2Þωz. Such a dynam-
ics can be interpreted as a “macroscopic” quantum tunnel-
ing regime between broken states—a phenomenon studied
extensively in large-spin molecules [15,52–54] and

(a) (b)

(c)

FIG. 3. (a) Parity gap δ between even- and odd-parity sectors,
and dynamical gap Δ between the ground and first even-parity
states as a function of the coupling λ. Solid (dashed) lines are
LMGM (mean-field) predictions. [(a) inset] Energy level scheme
of the six lowest eigenstates for λ ¼ 0.5ωz. (b) Breathing mode
oscillation performed for λ ¼ 1.04ð2Þωz. The solid line is a sine
fit of frequency Δ. (c) Dipole mode oscillation performed for
λ ¼ 0.79ð2Þωz. The solid line is a sine fit of frequency δ.

(a) (b)

(c)

FIG. 4. (a) Parity gap δ as a function of λ (blue dots) compared
with LMGM (blue line), mean-field theory (black dotted line),
semiclassical tunneling (red dashed line), and perturbation
theories (green dash-dotted line). The solid black line is the
mean value of δ expected from the LMGM and averaged over
magnetic field fluctuations. (b) and (c) Time evolutions of
projection probabilities Πmðx̂Þ during dipole mode oscillation
for λ ¼ 0.79ð2Þωz [Fig. 4(b)] and λ ¼ 1.36ð2Þωz [Fig. 4(c)]. The
most probable projection m� is plotted as a blue line.

(a) (b)

(c) (d)

FIG. 5. (a) and (b) Projection probabilities Πmðx̂Þ [Fig. 5(a)]
and ΠmðẑÞ [Fig. 5(b)] in the ground state as a function of ωx for
λ ¼ 1.40ð3Þωz. (c) and (d) Order parameter hσ1xi and mean parity
pz computed from Figs. 5(a) and 5(b) and compared to the
LMGM (solid lines) and the mean-field order parameter values
(dotted lines).
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superconducting quantum interference device systems
[55–57]. Deep in the ferromagnetic phase, the dipole
frequencies are consistent with the semiclassical theory
of quantum tunneling [58–60]. In the limit λ ≫ ωz, the
perturbation theory provides a simple picture of this
behavior: the two broken states j � Jix being coupled by
the z field via a 2J-order process leads to a high power-law
scaling of δ=ωz ∝ ðωz=λÞ2J−1. For values of λ≳ 1.5ωz, the
oscillation contrast decreases and the measured frequency
deviates from theory, which we attribute to residual
magnetic field fluctuations along x (rms width of
σB ¼ 0.4 mG), inducing an offset between the two wells
that exceeds the tunnel coupling.
We finally investigate the controlled breaking of parity

symmetry by a static magnetic field applied along x, which
adds a Zeeman coupling of −ℏωxJx mixing the two parity
sectors. As shown in Fig. 4, this field simultaneously
induces a finite order parameter hσ1xi and a reduction of the
mean parity pz. For large fields, the order parameter reaches
a plateau consistent with the mean-field prediction of
hσ1xi ¼ sgnðωxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðωz=λÞ2

p
. This behavior coincides

with a cancellation of the mean parity pz, illustrating the
link between broken-symmetry and nonzero order param-
eter [29]. Besides the controlled symmetry breaking dis-
cussed above, spontaneous symmetry breaking also occurs
in our system when preparing the ground state in the
ferromagnetic phase using very slow ramps of the light
coupling of _λ ≃ 10−3ω2

z . We find that the sign of the
spontaneous order parameter hσ1xi is directly related to
the sign of the shot-to-shot magnetic field fluctuation,
which is independently recorded. We found no signature of
more complex symmetry-breaking mechanisms, e.g.,
induced by interactions between atoms [61].
In conclusion, we studied the ground state and low-

energy spectrum of the LMGM via nonlinear dynamics of
the electronic spin of 162Dy atoms. A possible extension of
this study would be the nonadiabatic crossing of the critical
point, which is a problem related to quantum annealing [62]
and the Kibble-Zurek mechanism—for which the relevance
for infinitely coordinated systems is debated [63–67]. In the
ferromagnetic phase, we have demonstrated the production
of the coherent superposition of broken-symmetry states
[68] of interest for quantum-enhanced metrology [69]. Our
system is also well suited to investigate various sponta-
neous symmetry-breaking mechanisms at the microscopic
level and their connection to decoherence [70,71]. Our
work could also be generalized to systems with an internal
spin of larger amplitude, such as large-spin molecules
[15,72] or Rydberg atoms [73].
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