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Evidence for Bell’s nonlocality is so far mainly restricted to microscopic systems, where the elements of
reality that are negated predetermine results of measurements to within one spin unit. Any observed
nonlocal effect (or lack of classical predetermination) is then limited to no more than the difference of a
single photon or electron being detected or not (at a given detector). In this paper, we analyze experiments
that report the Einstein-Podolsky-Rosen (EPR) steering form of nonlocality for mesoscopic photonic or
Bose-Einstein condensate systems. Using an EPR steering parameter, we show how the EPR nonlocalities
involved can be quantified for four-mode states, to give evidence of EPR-nonlocal effects corresponding to
a two-mode number difference of 105 photons, or of several tens of atoms (at a given site). Applying to
experiments, we also show how the variance criterion of Duan, Giedke, Cirac and Zoller for EPR
entanglement can be used to determine a lower bound on the number of particles in a pure two-mode EPR-
entangled or steerable state.
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Introduction.—In 1935, Einstein, Podolsky, and Rosen
(EPR) presented a seemingly compelling argument that
quantum mechanics was incomplete [1]. In their gedanken
experiment, properties of a system B can be predicted
ultraprecisely, by the measurements of a distant observer,
popularly called Alice. EPR assumed no “spooky action-at-
a-distance” to argue that Alice’s measurement is noninva-
sive and, therefore, that Alice’s prediction represents a
predetermined property (an “element of reality”) of system
B. Further, they showed that the set of all such predeter-
mined properties could not be consistent with any local
quantum state description for B; thus, they concluded that
quantum mechanics was an incomplete theory. The
assumptions made in EPR’s argument are collectively
known as local realism (LR). Bell’s theorem negated these
premises by showing that LR could be falsified [2].
Understanding whether and how local realism fails

macroscopically remains an open question in physics.
Loophole-free experiments confirming Bell’s theorem have
so far been limited to microscopic systems; e.g., system B
is a single photon or electron [3,4]. In these cases, the
predetermined properties that EPR called elements of
reality give predictions to within a single spin unit.
Therefore, the failure of LR that is inferred from the
experiments is a microscopic effect only, in the sense that
this pertains only to predictions specified to an accuracy of
one spin unit for a microscopic particle. Similar accuracies
are required in almost all of the experiments predicted to
violate LR for multiparticle systems [5,6].

By contrast, EPR’s experiment (called an “EPR-
steering” experiment [7–11]) has been investigated exper-
imentally for mesoscopic optical fields [12–24], atomic
ensembles [25–32], and, recently, for mesoscopic mechani-
cal oscillators [33–41]. In many of these experiments, not
only are the systems sizable, but the outcomes are over a
larger range, corresponding to several or many spin units.
Thus, it is possible to test for a mesoscopic EPR-nonlocal
effect, where the predetermined elements of reality that are
falsified give predictions with an indeterminacy of several
spin units. One may then ask how much “spooky action-at-
distance” is occurring in terms of spin units. How to
perform the quantification is not obvious, however. It is not
simply the size of the entangled system nor the range of
outcomes. Previous measures inform us of how many
atoms are mutually entangled [42,43], or what fraction
of particle pairs behave locally versus nonlocally [44], but
these need not imply large differences in the actual out-
comes of observables due to nonlocal effects.
The situation is clear if the physical quantities measured

by observers Bob and Alice (at different locations) have
two mesoscopically distinct outcomes þ and −, e.g., N
particles in an up position versus N particles in a down
position (N ≫ 1) [45,46]. One may then extend EPR’s
premises to define δ-scopic local realism (δLR), which
asserts the following [47,48]: (1) any measurement by
Alice cannot instantly induce a change of magnitude δ from
þ to − (or vice versa) to the outcome of the measurement at
Bob’s location, and (2) if the outcome þ or − for Bob’s
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system can be predicted with certainty by Alice, then Bob’s
system is always predetermined to be in a state that gives
either the result þ or −. If the measurement at $B$ is the
number of particles up minus the number of particles
down, then δ ¼ 2N. The failure of such premises then
implies a “spooky action” nonlocal effect of size δ.
However, examples of EPR systems with just two out-
comes � separated by a large δ are limited.
In this paper, we present a practical approach to test EPR

premises based on δLR. We consider a version of EPR’s
argument based on the premise of δLR, where the sepa-
ration of outcomes þ and − is quantified by δ but where
there is a continuous range of outcomes. Our analysis leads
to a criterion that is sufficient to demonstrate EPR δ-scopic
nonlocality, thus revealing an inconsistency between the
completeness of quantum mechanics and the validity of
δLR. The size of δ quantifies, in part (1) of the δLR premise
above, the upper bound on the amount of change that can
occur to Bob’s system due to Alice’s measurements. Failure
of δLR where δ is large therefore implies a large nonlocal
effect. We analyze EPR experiments that have a meso-
scopic, continuous range of outcomes for Alice and Bob’s
measurements to present preliminary evidence for quanti-
fiable mesoscopic EPR nonlocalities.
Quantifying the EPR paradox.—The EPR argument can

be generalized to pairs of measurements fXA; PAg and
fXB; PBg on two spatially separated systems A and B. We
consider XB, PB to be scaled, noncommuting observables
satisfying ½XB; PB� ¼ 2, so that the Heisenberg uncertainty
relation is ΔXBΔPB ≥ 1. To demonstrate the paradox,
one measures the variances VBðXBjXAÞ and VBðPBjPAÞ
of the respective conditional distributions PðXBjXAÞ and
PðPBjPAÞ [9]. Here, PðXBjXAÞ is the probability for result
XB, given a measurement XA. The average conditional
variance ðΔinfXBÞ2 ¼

P
XA
PðXAÞVBðXBjXAÞ determines

the accuracy of inference of the results for XB, based on
the measurements at A. The ΔinfPB is defined similarly.
Using EPR’s logic, these inference variances define the
average indeterminacy of the two respective elements of
reality, for XB and PB. If

ε≡ ΔinfXBΔinfPB < 1 ð1Þ

then an EPR paradox arises since the simultaneous pre-
determination for XB and PB is more accurate than allowed
by the uncertainty principle [9,13]. The condition (1) is a
condition for “EPR steering of system B” [8,10].
We now construct a quantified version of the EPR

argument by relaxing EPR’s premises. The assumptions
of δX-scopic local realism (δXLR) assert two premises. (1)
A measurement made at A might disturb the system B,
so the outcome for a simultaneous measurement X on B can
be altered. However, any change to the outcome cannot be
greater (in magnitude) than δX. (2) If the value for a
physical quantity X is predictable, without disturbing the

(predictions for X of the) system by more than δX, then the
value of that physical quantity is a predetermined property
of the system (the element of reality for X), with the
predetermined value being given to within �δX of the
predicted value. We refer to δX as the degree of “nonlocal
indeterminacy,” with respect to the EPR observable X.
The assumption of δLR changes the condition for

an EPR paradox, making it more difficult to demonstrate
the paradox, because some degree of “spooky action-at-a-
distance” has been permitted in the assumptions. Applying
δXLR, the indeterminacy in the predictions for XB asso-
ciated with the element of reality has increased, but by a
limited amount only. We show in the Supplemental
Material [49] that the maximum value of this indeterminacy
becomes [49]

ðΔinf;δXXBÞ2 ¼ ðΔinfXBÞ2 þ δ2X

þ 2δX
X
XA;XB

PðXA; XBÞjXB − hXBjXAij; ð2Þ

where PðXA; XBÞ is the joint probability. Defining Δinf;δPPB

in a similar manner, the experimental realization of

εδ ≡ Δinf;δXXBΔinf;δPPB < 1 ð3Þ

will therefore imply an inconsistency between the premise
of δLR and the completeness of quantum mechanics. Here,
δ ¼ ðδX; δPÞ. The calculation of εδ is straightforward once
the distributions PðXA; XBÞ and PðPA; PBÞ are known.
When δ ¼ 0, Eq. (3) reduces to the standard EPR condition
(1). The inequality is progressively more difficult to satisfy
as δ increases.
Gaussian δ-scopic EPR nonlocality.—We consider EPR

experiments based on field modes at locations A, B. XA=B,
PA=B are defined according to a ¼ ðXA þ iPAÞ=2 and
b ¼ ðXB þ iPBÞ=2, where a, b are the annihilation oper-
ators of each mode. The δ-scopic EPR inequality reduces to
Eq. (3). A widely used source of EPR-correlated fields
is the parametric amplifier, the ideal output of which is the
two-mode squeezed state [9,13]. Here, the conditionals
PðXBjXAÞ and PðPBjPAÞ are Gaussian. Moreover, a
Gaussian profile is maintained in nonideal situations where
losses and thermal noise are present [13,54,55].
Assuming Gaussianity, the prediction of εδ given mea-

sured values of ΔinfXB and ΔinfPB is straightforward. Using
Eq. (2) and that, for a Gaussian distribution hjXB − μXji ¼
ΔinfXB

ffiffiffiffiffiffiffiffi
2=π

p
[where μX is the mean of PðXBjXAÞ], we find

εδ ¼ σ2 þ δ2 þ 2δσ
ffiffiffiffiffiffiffiffi
2=π

p
[49]. For the sake of simplicity,

we have taken σ ¼ ΔinfXB ¼ ΔinfPB and δ ¼ δX ¼ δP. We
see that ε < ½−δ ffiffiffiffiffiffiffiffi

2=π
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ2=π − ðδ2 − 1Þ

p
�2 will be suf-

ficient to imply the δ-scopic EPR nonlocality.
Extensive data have been reported for continuous var-

iable EPR experiments [12–27] (see Fig. 1). Gaussian
distributions are predicted in almost all cases plotted
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(including the data indicated by g) as has been verified
experimentally [13,55]. For rigorous testing, a full con-
struction of the distributions with spacelike separated
measurement events is required [2,4]. With this proviso,
we note that the recently achieved values of the EPR
parameter ε ∼ 0.176 [20] will imply a δ-scopic EPR non-
locality, with δ ∼ 0.633.
To determine the significance of the value of δ, one needs

to resort to the details of the individual experiments.
The nonlocal indeterminacy δ is given relative to thequantum
noise level, which for the optical experiments is usually
considered microscopic. On the other hand, entanglement
has now been detected between two mechanical oscillators
[33,34,38] and between an oscillator and a field [35].
Entanglement, however, does not imply the EPR steering
condition (1). It has been proposed to detect the EPR
condition (1) for these cases [33,36,40,41], where XB, PB
refer to the quadratures of the phononmodes of the oscillator.
Equation (3) enables a quantification of the EPR nonlocality
that would be observed in such an experiment. Here, δ is
quantifiable at the Planck scale [56], and it corresponds to a
nonlocal indeterminacy with respect to mechanical motion.
EPR nonlocality using Schwinger spins.—For some

experiments, the quantum noise level and hence δ may
correspond to a large number of photons. This case is
understood by considering the Heisenberg relation
ΔJZΔJY ≥ jhJXij=2 for spin systems (here ðΔxÞ2 is the
variance of x), where measurements are made of the spin
components JX;Y;Z. For high spins, jhJXij can be large.
Indeed, EPR states exist for which jhJXij is a scalable large

number. In these cases, the EPR observables are two-mode

Schwinger spins, defined as JXA ¼ ða†þa− þ aþa†−Þ=2, JYA ¼
ða†þa− − aþa†−Þ=2i, JZA ¼ ða†þaþ − a†−a−Þ=2, and JXB ¼
ðb†þb− þ bþb†−Þ=2, JYB ¼ ðb†þb− − bþb†−Þ=2i, JZB ¼ ðb†þbþ
−b†−b−Þ=2, where a�, b� are annihilation operators for four
modes [47]. The four modes are created from spatially
separated modes a, b prepared in an EPR state jψi. Each
mode a, b interferes (via a beam splitter) with an intense
“local oscillator” field (denoted by annihilation mode
operators bLO, aLO). This creates a macroscopic photonic
state jψiM involving four fields a� ¼ ða� aLOÞ=

ffiffiffi
2

p
, b� ¼

ðb� bLOÞ=
ffiffiffi
2

p
at sites A and B, respectively. The fields at

each site pass through second polarizing beam splitters set at
respective angles θA and θB. The number of particles in each
arm is detected as a large number, and the difference gives a
measure of JZ, JY , or JZ depending on the choice of θA, θB.
Based on the Heisenberg uncertainty relation, the EPR
criterion is

Δinf;δJðJZBÞΔinf;δJðJYBÞ < jhJXBij=2; ð4Þ

which normalizes to Eq. (3) on defining XB=PB ¼
JZ=YB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhJXBij=2

p
and δ ¼ δJ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhJXBij=2

p
. Here, jhJXBij ¼

jhb†LObLO − b†bi=2j, which becomes hb†LObLOi=2 since
hb†bi=hb†LObLOi is small. The intensity of the local osci-

llator is macroscopic, and δJ ∼ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb†LObLOi=4

q
(the non-

local indeterminacy in the values of JXB, J
Y
B) can therefore

also be large.
EPR nonlocality for Schwinger spins has been realized

in the experiments of Bowen et al. [14], where a� (b�)
correspond to two orthogonal horizontally (“H” or “x”) and
vertically (“V” or “y”) polarized field modes at A (B). From
the description of their experiment [14,49], jhJXBij ∼ 1011

photons, implying a δJ of order 105 photons. The relative
value δJ=jhJXBij is, however, small.
Analogy to Schrödinger cat.—The Schwinger-spin

experiment provides a simple parallel to Schrödinger’s
cat gedanken experiment [45,47]. In the original cat para-
dox, a macroscopic superposition is created by the process
of measurement, which couples the microscopic system
(prepared in a superposition state) to a measurement
apparatus. In the experiment, the microscopic EPR state
jψi is indeed coupled to a macroscopic system (the local
oscillator fields) at each site, and a four-mode amplified
state jψiM is produced that enables a macroscopic readout
of XA=B and PA=B of the original fields.
The many-particle state jψiM is created prior to the

measurements JθAA , JθBB (θA, θB ¼ X; Y or Z), and it is this
feature that enables the demonstration of mesoscopic
nonlocality. The jψiM is a superposition of states with
definite outcomes for JθBB , where those outcomes are given
by JθBB ¼ EXB=2 or EPB=2 (here, E2 ¼ hb†LObLOi),
depending on θB. The superposition jψiM comprises many

FIG. 1. The δ-scopic EPR nonlocality is realized (ϵδ < 1) when
ϵ is below the line shown, for the given δ. Data i − xxv are for the
experiments referenced in Fig. 9 of Ref. [13], while data a [15],
b [16], c [22], d [23], e [19], f [20], g [24], aa [25], bb [26],
cc [27], dd [32] are later experiments. All results determine EPR
correlations between spatially-separated optical fields, except
those given by blue stars, which determine correlations between
mesoscopic groups of cold atoms (aa, bb, cc) or between hybrid
systems (dd). The cold-atom groups have negligible (aa) or small
separations ∼10 μm (bb, cc).
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states that have a large range of continuous outcomes for
JθBB , rather than just two distinct states as in Schrödinger’s
case. In the Supplemental Material, we prove that the
observation of the δJ-scopic EPR nonlocality can only arise
if jψiM comprises at least two states that differ in outcome
for JθBB by at least δJ [49]. Such states (when δJ is large)
give a nonzero mesoscopic quantum coherence and signify
a generalized Schrödinger-cat paradox (refer Refs. [57–
60]). These states, for which EPR nonlocality is also
demonstrated, are well nested within the overall super-
position state, however. For an experimental value ϵ ∼ 0.42
(where δ ∼ 0.4), their separation is typically δJ ¼ 0.4E=2,
whereas the state jψiM predicts a Gaussian distribution for
JθBB , with ΔJθBB ∼ 1.3E=2.
The δ-scopic EPR nonlocality manifests without the

significant decoherence that normally prevents formation
of Schrödinger-cat states because the separation δJ between
states of the superposition is not amplified relative to the
quantum noise level. The EPR steering parameter εδ is
unchanged, consistent with the requirement that entangle-
ment cannot be created by local entangling transformations,
such as produced by beam splitters [61].
EPR nonlocality between distinct atom groups.—The

experiments of Refs. [28–31] investigate EPR entangle-
ment between two spatially separated macroscopic atomic
ensembles, A and B. In their experiment, JX;Y;ZA=B are the
collective spins of each ensemble, defined relative to two
atomic levels. The observation of the condition D≡
f½ΔðXA − XBÞ�2 þ ½ΔðPA þ PBÞ�2g=4 < 1 implies entan-
glement between subsystems A and B [62]. For spins, this
entanglement condition becomes [63]

D≡ ½ΔðJZA þ JZBÞ�2 þ ½ΔðJYA þ JYBÞ�2
jhJXAij þ jhJXBij

< 1: ð5Þ

Measurements give D ∼ 0.8 for thermal atomic ensembles
[28,29]. The value ofD < 0.5would imply an EPR steering
nonlocality (4) [13,64,65]. For a rigorous demonstration of
EPR nonlocality, it is, however, necessary to measure the
EPR observables independently and locally so that infor-
mation is gained simultaneously about each of JθAA and JθBB .
EPR steering correlations meeting the condition (1) have,

however, recently been observed for matter-wave fields
created with Bose-Einstein condensates (BEC) [25–27,
66,67]. In the experiments of Refs. [25,26,67], twin atom-
beam states are generated by a parametric interaction [67].
Atoms are created in pairs, one into each group A and B that
correspond to different spins. The atom field quadratures
XA=B, PA=B are measured by an atomic homodyne method,
where the local oscillators are a different, larger group
consisting of E¼ha†LOaLOi∼hb†LObLOi>102 atoms [67].
Experiments of Piese et al. observe EPR correlations (1)
between mesoscopic atomic groups A and B with ε ∼ 0.85
(with no spatial separation) [25]. Recently, Kunkel et al.

observed an EPR steering with ε ∼ 0.71 between atom
groups spatially separated by ∼10 μm [27]. Assuming
results are unchanged if the experiments were reconfigured
along the lines of the Schwinger-spin experiments, and that
the distributions are approximately Gaussian, these results
suggest nonlocalities with δJ > Eδ > 20 atoms.
Using a different method of generation, Fadel et al.

observed EPR steering correlations (ε ∼ 0.74) between the
Schwinger spins JZA, J

Z
B (and JYA, J

Y
B) of two atomic groups

separated by 4 μm [26]. Here, group A (B) consists of two
BEC components, a� (b�). Their measurement of spins
(JX or JY) is achieved with a variable pulse rotation θ, in
analogy to the polarizing beam splitter of Bowen et al.
(although without independent selection of the two meas-
urement angles). The BEC experiments thus reveal quan-
tifiable nonlocal indeterminacies in the atom number
differences JθBB at the given site. The nonlocality being
tested here is whether an action at the site A can create a
change in the number of atoms between the groups bþ and
b−, at site B.
Quantification of number of bosons in the two-mode

entangled state.—The large values of δJ arise for four-mode
states. However, the two-mode EPR state jψi can itself
be constrained to have a certain degree of “largeness.” For
any entangled pure state jψi, the mean total number of
bosons is n̄ ¼ hψ ja†aþ b†bjψi. The value of D places
a lower bound on n̄. Using the identity jhabij ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðha†ai þ 1Þhb†bi

p
[68], we find D ≥ DðlÞ

n̄ [49], where

FIG. 2. The entanglement parameter D is plotted versus the
date for a sample of experiments. Data (ii − xxv) are the values
reported for atomic (stars) and optical (triangles) experiments,
as listed in Fig. 9 of Ref. [13]. Data c [22], d [23], e [19], f [20],
g [24], h [18] are for optical experiments (diamonds); data
aa [25], dd [32], ee [29] are for atomic or hybrid experiments
(stars); and ff [35], gg [38] are for mechanical-oscillator

experiments (squares). Note that D < DðlÞ
n̄ implies the EPR

state jψi has a mean number of bosons greater than n̄. The DðlÞ
n̄

are plotted for n̄ ¼ 1, 2, 3, 4. Here, D < Dn0 requires states of
more than n0 bosons. We plot Dn0 for n0 ¼ 2, 3, 4. For n0 ¼ 10,
Dn0 ≃ 0.2228.
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DðlÞ
n̄ ¼ 1þ n̄ − n̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=n̄

p
decreases with n̄ and is

achieved for the two-mode squeezed state, for which
D ¼ ð1 − xÞ=ð1þ xÞ. In an experiment, the two-mode
system is generally not a pure state. Then, the measured
ha†aþ b†bi does not reflect the mean number of bosons in
an entangled state because there may be components
of the mixture that are not entangled. However, the

observation of D < DðlÞ
n̄ certifies that a pure entangled

state jψi with ha†aþ b†bi > n̄ must be a component of
the mixed state [49]. Similarly, by expanding all pure
states in the basis of number states jiiajjib, we prove in
the Supplemental Material that the value D places a lower
bound on the minimum number of bosons n0 ¼ iþ j
contributing a nonzero term to the expansion. If the bosons
are atoms, the state jiiajjib has an entanglement depth of
n0 ¼ iþ j, meaning all n0 atoms are mutually entangled
[42,43,49].
Experimental values of D are plotted in Fig. 2. The

values D < 0.2228 confirm two-mode optical EPR states
jψi involving more than 10 photons (n0 > 10). These states
are different from states constructed from photon pairs, for
which n0 ≤ 2. Where D < 0.5, the two modes of the state
jψi are both EPR steerable [69]. Measurements by Piese
et al. [25] observe D < 0.43, implying two-way EPR
steerable states jψi with more than 3 atoms (if spatial
separation could be achieved) [49].
Conclusion.—We have given evidence for a mesoscopic

EPR nonlocality that “delocalizes” δJ ∼ 105 photons
between two polarization modes at a given site. This
represents a tenth of the full range of outcomes (defined
as that within 3 standard deviations of the mean) for the
polarization photon-number difference at the site. Recent
experiments with Bose-Einstein condensates show similar
EPR nonlocalities involving four atomic modes. This
motivates new experiments where it may be feasible to
demonstrate an EPR nonlocality “delocalizing” δJ ∼ 10
atoms across two highly occupied atomic modes at a given
site. The criteria presented in this paper may also have a
practical application. The curves of Fig. 1 can be used to
detect a genuine EPR effect, even when a causal effect is
present. If the maximum disturbance due to the causal effect
can be quantified (to be δC say), then an EPR nonlocality can
be deduced if ϵδ < 1 where δ > δC. An example of such a
causal effect (“cross-talk”) is given in Ref. [27].
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Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt,
Nat. Commun. 6, 8984 (2015).

[26] M. Fadel, T. Zibold, B. Décamps, and P. Treutlein, Science
360, 409 (2018).

[27] P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian,
T. Gasenzer, M. Gärttner, and M. K. Oberthaler, Science
360, 413 (2018).

[28] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)
413, 400 (2001).

[29] H. Krauter, C. A. Muschik, Kasper Jensen, W. Wasilewski,
J. M. Petersen, J. I. Cirac, and E. S. Polzik, Phys. Rev. Lett.
107, 080503 (2011).

[30] C. A. Muschik, E. S. Polzik, and J. I. Cirac, Phys. Rev. A 83,
052312 (2011).

[31] C. A. Muschik, H. Krauter, K. Jensen, J. M. Petersen, J. I.
Cirac, and E. S. Polzik, J. Phys. B 45, 124021 (2012).

[32] M. Dabrowski, M. Parniak, and W. Wasilewski, Optica 4,
272 (2017).

[33] V. Giovannetti, S. Mancini, and P. Tombesi, Europhys. Lett.
54, 559 (2001).

[34] S. G. Hofer, W. Wieczorek, M. Aspelmeyer, and K.
Hammerer, Phys. Rev. A 84, 052327 (2011).

[35] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K.W.
Lehnert, Science 342, 710 (2013).

[36] R. Schnabel, Phys. Rev. A 92, 012126 (2015).
[37] R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer,

M. Aspelmeyer, S. Hong, and S. Gröblacher, Nature
(London) 556, 473 (2018).

[38] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen,
M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A.
Sillanpää, Nature (London) 556, 478 (2018).

[39] I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M.
Aspelmeyer, and S. Gröblacher, Phys. Rev. Lett. 121,
220404 (2018).

[40] Q. Y. He and M. D. Reid, Phys. Rev. A 88, 052121 (2013).
[41] S. Kiesewetter, Q. Y. He, P. D. Drummond, and M. D. Reid,

Phys. Rev. A 90, 043805 (2014).
[42] A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431

(2001).
[43] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K.

Oberthaler, Nature (London) 464, 1165 (2010); M. F.
Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P.
Treutlein, Nature (London) 464, 1170 (2010).

[44] A. Elitzer, S. Popescu, and D. Rohrlich, Phys. Lett. A 162,
25 (1992); S. Portmann, C. Branciard, and N. Gisin, Phys.
Rev. A 86, 012104 (2012).

[45] E. Schrödinger, Naturwissenschaften 23, 844 (1935).
[46] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
[47] M. D. Reid, Phys. Rev. Lett. 84, 2765 (2000); Z. Naturforsch.

A 56, 220 (2001).
[48] M. D. Reid, Phys. Rev. A 97, 042113 (2018).
[49] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.120402, which in-
cludes Refs. [50–53], for proof of Eq. (2), a discussion of
polarization EPR measurements, the proof of spread of the
superposition based on the EPR nonlocality parameter, and
proof of the relation between D and the total occupation
number of the entangled (or steerable) state, and the relation
to entanglement depth.

[50] B. J. Dalton, J. Goold, B. M. Garraway, and M. D. Reid,
Phys. Scr. 92, 023004 (2017).

[51] N. J. Engelsen, R. Krishnakumar, O. Hosten, and M. A.
Kasevich, Phys. Rev. Lett. 118, 140401 (2017).

[52] N. Killoran, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.
112, 150501 (2014).

[53] J. D. Bancal, N. Gisin, Y. C. Liang, and S. Pironio, Phys.
Rev. Lett. 106, 250404 (2011).

[54] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys.
84, 621 (2012).

[55] V. D’Auria, S. Fornaro, A. Porzio, S. Solimeno, S. Olivares,
and M. G. A. Paris, Phys. Rev. Lett. 102, 020502 (2009).

[56] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and
Č. Brukner, Nat. Phys. 8, 393 (2012).

[57] E. G. Cavalcanti andM. D. Reid, Phys. Rev. Lett. 97, 170405
(2006); C.Marquardt, U. L. Andersen, G. Leuchs, Y. Takeno,
M.Yukawa,H.Yonezawa, andA. Furusawa, Phys. Rev.A 76,
030101(R) (2007); B. Opanchuk, L. Rosales-Zárate, R. Y.
Teh, and M. D. Reid, Phys. Rev. A 94, 062125 (2016).

[58] E. G. Cavalcanti and M. D. Reid, Phys. Rev. A 77, 062108
(2008).

[59] F. Fröwis, P. Sekatski, and W. Dür, Phys. Rev. Lett. 116,
090801 (2016); F. Fröwis, N. Sangouard, and N. Gisin, Opt.
Commun. 337, 2 (2015).

[60] F. Fröwis, P. Sekatski, W. Dür, N. Gisin, and N.Sangouard,
Rev. Mod. Phys. 90, 025004 (2018).

[61] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight,
Phys. Rev. Lett. 78, 2275 (1997).

[62] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000).

[63] M. G. Raymer, A. C. Funk, B. C. Sanders, and H. de Guise,
Phys. Rev. A 67, 052104 (2003).

[64] Q. Y. He and M. D. Reid, New J. Phys. 15, 063027
(2013).

[65] A. J. Ferris, M. K. Olsen, E. G. Cavalcanti, and M. J. Davis,
Phys. Rev. A 78, 060104(R) (2008).

[66] K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I.
Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Science
360, 416 (2018).

[67] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G.
Kurizki, and M. K. Oberthaler, Nature (London) 480, 219
(2011).

[68] M. Hillery and M. S. Zubairy, Phys. Rev. Lett. 96, 050503
(2006).

[69] Q. Y. He, Q. H. Gong, and M. D. Reid, Phys. Rev. Lett. 114,
060402 (2015).

PHYSICAL REVIEW LETTERS 123, 120402 (2019)

120402-6

https://doi.org/10.1063/1.3630183
https://doi.org/10.1103/PhysRevA.87.022104
https://doi.org/10.1364/OE.21.011546
https://doi.org/10.1364/OE.21.011546
https://doi.org/10.1103/PhysRevLett.110.130407
https://doi.org/10.1364/OE.18.006149
https://doi.org/10.1364/OE.18.006149
https://doi.org/10.1103/PhysRevA.85.040305
https://doi.org/10.1103/PhysRevA.85.040305
https://doi.org/10.1103/PhysRevLett.117.250501
https://doi.org/10.1103/PhysRevLett.117.250501
https://doi.org/10.1038/ncomms9984
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1038/35096524
https://doi.org/10.1038/35096524
https://doi.org/10.1103/PhysRevLett.107.080503
https://doi.org/10.1103/PhysRevLett.107.080503
https://doi.org/10.1103/PhysRevA.83.052312
https://doi.org/10.1103/PhysRevA.83.052312
https://doi.org/10.1088/0953-4075/45/12/124021
https://doi.org/10.1364/OPTICA.4.000272
https://doi.org/10.1364/OPTICA.4.000272
https://doi.org/10.1209/epl/i2001-00284-x
https://doi.org/10.1209/epl/i2001-00284-x
https://doi.org/10.1103/PhysRevA.84.052327
https://doi.org/10.1126/science.1244563
https://doi.org/10.1103/PhysRevA.92.012126
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevA.88.052121
https://doi.org/10.1103/PhysRevA.90.043805
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/nature08988
https://doi.org/10.1016/0375-9601(92)90952-I
https://doi.org/10.1016/0375-9601(92)90952-I
https://doi.org/10.1103/PhysRevA.86.012104
https://doi.org/10.1103/PhysRevA.86.012104
https://doi.org/10.1007/BF01491987
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.84.2765
https://doi.org/10.1103/PhysRevA.97.042113
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.120402
https://doi.org/10.1088/1402-4896/92/2/023004
https://doi.org/10.1103/PhysRevLett.118.140401
https://doi.org/10.1103/PhysRevLett.112.150501
https://doi.org/10.1103/PhysRevLett.112.150501
https://doi.org/10.1103/PhysRevLett.106.250404
https://doi.org/10.1103/PhysRevLett.106.250404
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.102.020502
https://doi.org/10.1038/nphys2262
https://doi.org/10.1103/PhysRevLett.97.170405
https://doi.org/10.1103/PhysRevLett.97.170405
https://doi.org/10.1103/PhysRevA.76.030101
https://doi.org/10.1103/PhysRevA.76.030101
https://doi.org/10.1103/PhysRevA.94.062125
https://doi.org/10.1103/PhysRevA.77.062108
https://doi.org/10.1103/PhysRevA.77.062108
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1103/PhysRevLett.116.090801
https://doi.org/10.1016/j.optcom.2014.07.017
https://doi.org/10.1016/j.optcom.2014.07.017
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevA.67.052104
https://doi.org/10.1088/1367-2630/15/6/063027
https://doi.org/10.1088/1367-2630/15/6/063027
https://doi.org/10.1103/PhysRevA.78.060104
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1038/nature10654
https://doi.org/10.1038/nature10654
https://doi.org/10.1103/PhysRevLett.96.050503
https://doi.org/10.1103/PhysRevLett.96.050503
https://doi.org/10.1103/PhysRevLett.114.060402
https://doi.org/10.1103/PhysRevLett.114.060402

