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We report the emergence of zero-energy states in the trivial phase of a short nanowire junction
with a strong spin-orbit coupling and magnetic field, formed by strong coupling between the
nanowire and two superconductors. The zero-energy states appear in the junction when the super-
conductors induce a large energy shift in the nanowire, such that the junction naturally forms a
quantum dot, a process that is highly tunable by the superconductor width. Most importantly,
we demonstrate that the zero-energy states produce a π shift in the phase-biased supercurrent, which
can be used as a simple tool for their unambiguous detection, ruling out any Majorana-like
interpretation.
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Majorana bound states (MBSs) in topological super-
conductors have generated remarkable interest due to their
potential applications in fault tolerant quantum computa-
tion [1–3]. A promising route for engineering the topo-
logical phase is based on nanowires (NWs) with strong
Rashba spin-orbit coupling (SOC) and proximity-induced
s-wave superconductivity, with MBSs emerging at the NW
ends for sufficiently large magnetic fields [4–6]. Initial
issues, such as a soft superconducting gap [7–13] of the
first experiments [14–19], have been resolved through the
fabrication of high-quality interfaces between the NW and
external superconductors (SCs) [20–30].
Despite the advances, there is still no consensus whether

or not MBSs have been observed. In fact, recent reports
show that trivial zero-energy Andreev bound states (ABSs)
from, e.g., chemical potential inhomogeneities, appearing
well outside the topological phase [31–34], can also lead to
a 2e2=h quantized conductance [35,36], a feature previ-
ously attributed solely to MBSs [37]. This controversy can
at least partially be attributed to oversimplified models used
to describe the experiments. Indeed, a common treatment
of superconductivity has been to simply add an induced
superconducting gap into a one-dimensional (1D) NW
model, ignoring all other effects caused by coupling a SC to
a NW.
A more accurate approach is to study the whole NWþ

SC system, since the achieved high-quality interfaces
result in a strong coupling between NW and SC and thus
the SC generates both an induced gap and affect other NW
parameters. Importantly, the NW energies are shifted
when the coupling between the SC and NW is strong
due to the lowest states having a large weight in the SC
[38–42]. This results in an effective chemical potential μeff

in the NW, which regulates when the NW reaches the
topological phase. Therefore, using a NWþ SC model is
crucial for gaining further insights into the experimental
situation.
In this Letter, we study the whole NWþ SC system

and find trivial zero-energy ABSs spontaneously emerg-
ing in a NW strongly coupled to two SCs forming a short
superconductor-normal-metal-superconductor (S-N-S)
junction. The zero-energy ABSs appear in the junction
when the SCs induce a large μeff in the NW, such that
the junction forms natural quantum dot (QD). The QD
formation occurs at regular intervals, every Fermi wave-
length increment in SC width, and is thus predictable. By
simply regulating the width of the SCs, we can tune the
NW from an ideal regime with no energy shifts, to forming
a QD or even a potential barrier (PB) at the junction. The
formation of the QD and its zero-energy ABSs is therefore
very different from previous situations where the QD was
simply put in by hand [36,43–48]. Most importantly, we
find that the trivial zero-energy QD states produce a π shift
in the phase-biased supercurrent, while MBSs appearing
in the topological phase do not. Thus, the Josephson effect
in short S-N-S junctions offers a remarkably powerful, yet
simple tool for distinguishing between trivial zero-energy
states and MBSs.
Model.—We use a 1D NW with strong SOC with the

right (R) and left (L) parts strongly coupled to the middle
of two 2D conventional SCs, leaving only the central part
of the NW uncoupled and forming a short S-N-S junction,
see Fig. 1(a). By varying a magnetic field parallel to
the NW we easily tune the topology of the junction. The
Hamiltonian is thus H ¼ HNW þHL

SC þHR
SC þHS−W ,

with
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HNW¼
XLNW

x¼1;σσ0
d†xσðεNWδσσ0 þBσxσσ0 Þdxσ0

−
XLNW−1

x¼1;σ

d†xσðtNWδσσ0−iαNWσ
y
σσ0 Þdxþ1;σ0 þH:c:;

HR=L
SC ¼

X

i;j;σ

c†iσ½ðεscδij−tscδhi;jiÞcjσþΔR=L
sc ðiÞc†i↑c†i↓�þH:c:;

HS−W¼−Γ
X

i

XLNW

x¼1;σ

c†iσdxσδiy;
Lyþ1

2

δix;xþH:c:;

where dxσ is the destruction operator for a particle with
spin σ at site x in the LNW long NW, while ciσ is the
destruction operator at site i ¼ ðix; iyÞ in the 2D SCs with
length Lx, width Ly. Here, h� � �i implies nearest neighbor
sites, t represents the nearest neighbor hopping, and
μ the chemical potential, such that the on-site energies
εNW ¼ 2tNW − μNW, εsc ¼ 4tsc − μsc. In the NW αNW ¼
αR=2a is the SOC, with αR the SOC strength and a the
lattice constant, and B is the effective Zeeman coupling
caused by the magnetic field with σν a Pauli matrix. The
SCs have an on-site s-wave superconducting order param-
eter ΔR=L

sc ðiÞ ¼ jΔscjeiϕR=L, with ϕR=L being the SC phase.
Finally, HS−W is the NW-SC tunneling Hamiltonian with
finite coupling strength Γ, whenever the NW touches
either SCs.
We solve the Hamiltonian within the Bogoliubov–de

Gennes framework [49] using parameters in units of tsc:
μsc ¼ 0.5, μNW ¼ 0.02tNW, αNW ¼ 0.05tNW, tNW ¼ 4,
which accounts for the small NW effective mass and
mismatching Fermi wave vectors in NW and SC, and
being close to realistic values. We also set ΔscðiÞ ¼ 0.1,
ϕR ¼ 0, and ϕL ¼ ϕ. Here, the strong coupling regime,
with the induced gap in the NW close to Δsc, is reached
around Γ ¼ 0.7. For smaller Δsc and μsc, a smaller Γ
achieves strong coupling. Further, we use Lx ¼ 520a,
LNW ¼ 1000a, and keep the N junction 2a long, to reach
realistic sizes with the outer ends of the NWs well within
the SCs. The width of the SC, Ly, is varied in order to tune
the influence of the SC on the NW [39–42]. We have
verified that our results remain qualitatively unchanged
for Δsc and Γ both being smaller (or even larger), as well
as when ΔscðiÞ is calculated self-consistently [50–54].
Our results also do not depend on Lx, LNW, junction
length, provided Lx, LNW are longer than the superconduct-
ing coherence length and the junction is short; see
Supplemental Material (SM) for more information [55].
As a result of strong coupling to the SC, all inherent NW

parameters are renormalized [38–42,56]. Most important is
an energy shift of the NW bands [42]. We encode this by an
effective chemical potential μeff , which we define as the
energy of the bottom of the hybridized subband closest to
the Fermi energy (since superconductivity occurs around
the Fermi energy). We extract μeff deep in the S regions of

the NW and find that it oscillates as a function of Ly, see
Fig. 1(b). The oscillations are due to a mismatch between
the SC and NW bands, with the period (here 8a) given by
the SC Fermi wavelength. Thus, by changing Ly we can
easily tune through a range of μeff .
Low-energy spectrum.—When the S regions of the NW

get a nonzero μeff , the properties of the S-N-S junction
change. We show this first by studying the Zeeman
dependent low-energy spectrum at ϕ ¼ 0 for three values
of the SC width Ly, see Figs. 2(a)–2(c). The common
characteristic in all three cases is that the spectrum exhibits
a sizable gap at zero B, indicating the presence of super-
conductivity, which then closes and reopens at the critical
field Bc signaling the topological phase transition (green
dashed line). By calculating the topological invariant for a
NW coupled to a single SC [57] we verify that the gap
closure in Figs. 2(a)–2(c) matches the topological phase
transition point. In the topological phase the S-N-S system
hosts a pair of MBSs, with zero energy, one at each end of
the NW (outer MBS), for all cases. Since μeff changes the
NW properties, we find that Bc also changes somewhat
with Ly.
Remarkably, there is a very strong effect of Ly on the

low-energy spectrum inside the junction, resulting in the
emergence of additional low-energy states below Bc. These
can be understood when comparing μeff in the S regions of
the NW to the native chemical potential μNW, which is still
the relevant energy in the N region. In fact, in Fig. 2(a) the
low-energy spectrum does not exhibit any unusual features,
since here μeff ≈ μNW [triangle in Fig. 1(b)]. We refer to this
regime as the ideal case. However, when μeff < μNW [cross
in Fig. 1(b)], the junction acts as a potential barrier (PB)
and we see in Fig. 2(b) that such a PB junction can host
discrete low-energy levels in the trivial phase. Finally, when
μeff > μNW [dot in Fig. 1(b)], there is instead a quantum dot
(QD) profile in the junction. Remarkably, this QD accom-
modates a clear single zero-energy crossing in the trivial
phase, see Fig. 2(c).
We here stress that the QD with a zero-energy crossing in

the trivial phase emerges spontaneously at the junction, just
due to strong NW-SC coupling and tuning Ly. We have

(b)(a)

FIG. 1. (a) 1D NW (cyan) coupled to the middle of two 2D SCs
(red) by Γ. A short central region of the NW is left uncoupled,
giving a short S-N-S junction with a ϕ superconducting phase
difference. (b) Effective chemical potential profile deep into the S
parts of the NW as a function of SC width Ly. Markers are
representative points at which three cases are studied: ideal
(triangle), PB (cross), and QD (dot).
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numerically verified that the QD zero-energy states occur
for α̃ < B < Bc, where α̃ is the renormalized SOC in
the NW (dependent on Ly and Γ, here α̃ ≈ 0.5αNW),
see SM [55]. Zero-energy states have previously been
reported in simple 1D models with a QD put in by hand
[32,36,44,47,48,58], producing signatures similar to MBSs
and thus challenging attempts trying to distinguish between
such trivial zero-energy levels and MBSs [36,42,59,60]. In
our work the QD instead develops naturally and we also
find that the trivial zero-energy crossings appear solely in
the QD regime, not in the PB or ideal regimes.
Further insights can be obtained from the local spin

projection along B (i.e., the x component), in the lowest

level E0 states, which is given by SðxÞx ¼ v�x↑ux↓ þ u�x↓vx↑,
and the superscript (subscript) denotes the component
(position) and uxσ , vxσ are the wave function amplitudes

at position x [61–64]. In Fig. 2(d) we show SðxÞx at the

junction, i.e., x ¼ LNW=2, with marker size denoting the

magnitude. SðxÞLNW=2 vanishes in the topological phase as the
lowest level E0 is then the outer MBSs. However, in the
trivial phase the zero-energy crossing in the QD case is
accompanied by an exchange of spins in the occupied state.
Such spin exchange does not occur in the other cases,
leading to a fundamental difference in the spin properties
of the QD and PB cases, even if they both host discrete
low-energy states below the quasicontinuum.
We finally analyze the size of the regime where

trivial zero-energy QD states are observed. In Figs. 2(e)
and 2(f) we plot E0 as a function of Γ and B for the cases in
Figs. 2(a) and 2(c), respectively. From the low-energy
spectrum, we identify the topological phase transition
(green line) and the beginning of the zero-energy state
QD regime (red line). The QD regime forms a triangular
region which is clearly enlarged with Γ. Remarkably,
Fig. 2(e) shows that even wide SCs can host a QD regime
with trivial zero-energy states for strong enough couplings
[white dotted line marks Γ ¼ 0.7 from the ideal case in
Fig. 2(a)]. We thus conclude that S-N-S junctions readily
form natural QDs hosting trivial zero-energy states in the
strong coupling regime.
Phase dependence.—Next, we allow for a finite phase ϕ

across the S-N-S junction. In particular, we study the phase-
dependent energy spectrum for the QD case in Fig. 2(c) at
the B values identified by the colored bars. At very low B
(blue) we find ABSs detached from the quasicontinuum
and exhibiting the usual cosine behavior [65,66], see
Fig. 3(a). These lowest energy states are localized at the
junction for both ϕ ¼ 0; π, see blue line in Figs. 3(e) and
3(f). On the other hand, in the topological phase at very
large B (green) four MBSs appear in the system: two
dispersionless outer MBSs and at ϕ ¼ π also two MBSs
located in the junction (inner MBSs), see Fig. 3(d) for the
energy spectrum and Figs. 3(e) and 3(f) for the wave
function probabilities. In both the low B trivial and high B
topological regimes, the lowest level reaches maximum
negative energy at ϕ ¼ 0. The S-N-S junction is therefore in
the 0 state because the free energy, F ¼ P

n<0En, is
minimized at ϕ ¼ 0, see blue and green lines in the inset
of Fig. 3(a).
It is at intermediate B in the trivial phase that dramatic

changes takes place. First, the ABSs move towards zero
energy with increasingB and start to cross, see Fig. 3(b). As
a consequence, the free energy, plotted in gold in the inset
in Fig. 3(a), has a global minimum at ϕ ¼ 0 and a local
minimum at ϕ ¼ π. The junction is thus in a 00 state [67].
Further increasing B we find that the global and local
minima interchanges, eventually reaching the situation in
Fig. 3(c). Here, the zero-energy crossing is at ϕ ¼ 0,
implying that a full π shift has occurred in the low-energy
spectrum. As a consequence, this junction is in a π state,
since the minimum of F is now at ϕ ¼ π, see red Fig. 3(a)
inset. At ϕ ¼ 0 the ABSs are localized at the junction, as in

(a)

(b)

(c)

(e)

(f)

(d)

FIG. 2. Zeeman field-dependent spectrum at ϕ ¼ 0 for ideal
(Ly ¼ 41a) (a), PB (Ly ¼ 11a) (b), and QD (Ly ¼ 21a) (c) cases.
Vertical dashed green lines in (a)–(d) mark the topological phase
transition, while the red arrow in (c) marks the start of zero-

energy levels. (d) Local spin projection at the junction SðxÞx¼LNW=2 in
the lowest level E0 for cases (a)–(c) as a function of B=Bc. Cyan
(magenta) marks spin up (down) while marker size denotes
magnitude. (e),(f) Color plot of E0 as a function of Γ and B for
Ly ¼ 41a (e) and Ly ¼ 21a (f) cases. The green line marks the
topological phase transition, the red line marks the start of
the supercurrent π shift, and the dotted white line marks
Γ ¼ 0.7. The filled circles in (f) denote colored markings in (c).
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all other cases in the trivial phase, while at ϕ ¼ π the lowest
energy state is completely delocalized because of mixing
with the quasicontinuum, see red in Figs. 3(e) and 3(f).
We find that the π state always emerges when the S-N-S

junction hosts a pair of QD states with zero-energy cross-
ings. In essence this is because the QD forces the ABS to be
at or close to zero energy for ϕ ¼ 0. We also note that the
QD introduces a phase dependence for the quasicontinuum,
unlike in conventional short junctions [68]. We have also
verified that the ideal and PB cases do not exhibit any π
states, see SM [55]. Thus, the phase-dependent energy
spectrum offers a remarkably clear differentiation between
topologically trivial zero-energy QD levels and MBSs.
Current-phase relationship.—To perform a direct

detection of the QD trivial zero-energy states we consider
the junction supercurrent IðϕÞ, obtained from IðϕÞ ¼
I0ð∂F=∂ϕÞ, where I0 ¼ e=ℏ. Figure 4(a) shows a color
plot of Ī ¼ IðϕÞ=I0 as a function of ϕ and B for the QD
case in Fig. 2(c). For a complete understanding of how the
QD levels contribute to IðϕÞ, we also plot both the total
supercurrent and the contributions from the lowest (E0) and
first excited (E1) energy levels in Figs. 4(b), 4(c) and 4(d),
respectively, for the same B values analyzed in Fig. 3.
At low B in the trivial phase IðϕÞ displays the usual

sinðϕÞ-like behavior. This is the 0 state, where E0 gives
the dominating contribution to the supercurrent, albeit E1

also gives a small positive contribution; see blue line in

Figs. 4(b)–4(d). Beyond the topological phase transition
(green dashed line) the situation is also easy to understand.
Here, IðϕÞ has a characteristic sawtooth profile at ϕ ¼ π
due to the special zero-energy behavior of the inner MBS at
ϕ ¼ π, which has been proposed as a signature of true
MBSs in short S-N-S junctions [65,66].
Between the magenta and white lines in Fig. 4(a), we

find a region with a discontinuous IðϕÞ, which is caused by
the ABS crossings in Fig. 3(b). Here, the E0 levels are
strongly dispersive with ϕ leading to the largest contribu-
tions to IðϕÞ, see gold in Fig. 4(c). Finally, between the
dashed white and green lines in Fig. 4(a), we find a full sign
reversal for the supercurrent, with the white line corre-
sponding to the red arrow in Fig. 2(c) indicating the zero-
energy crossing at ϕ ¼ 0. This π-shifted supercurrent arises
from the special behavior of the low-energy spectrum:
the lowest ABSs exhibit maximum energy at ϕ ¼ π, see
Fig. 3(c), instead of a minimum as is the case for conven-
tional junctions [68]. Thus, the E0 level contributes
strongly to the π-shifted supercurrent, as also seen in red
in Fig. 4(c). Because of the presence of the QD levels, the
quasicontinuum also gives a π-shifted contribution to IðϕÞ.
For the ideal and PB junctions, the ABS energy spectrum
only exhibits 0, 00, π0 states, but never the π state and thus
we never see a π-shifted supercurrent. Some signatures of
the QD and PB junctions can also be captured by the critical
current but not as clear as the π shift, see SM [55].
For S-N-S junctions with trivial zero-energy crossings we

always find a π-shifted supercurrent, independent on any
zero-energy pinning after the crossing. These zero-energy
levels, appearing in the QD regime, are, however, somewhat

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a)–(d) Phase-dependent low-energy spectrum in the QD
case (Ly ¼ 21a), obtained at the color-markedB values inFig. 2(c).
Inset in (a): scaled free energy F̃ ¼ ðF − FminÞ=ðFmax − FminÞ for
(a)–(d), withFmin ðmaxÞ theminimum (maximum) ofF in each case.
Probability density of the lowest state, jΨ0j2 × 103, in (a)–(d) at
ϕ ¼ 0 (e) and ϕ ¼ π (f).

(c)

quasicontinuum (dashed)

(d)

(a)
(b)

FIG. 4. (a) Color plot of the supercurrent for the QD case
(Ly ¼ 21a) as a function of ϕ and B. Topological phase transition
(green dashed line), beginning of ABS crossings in phase-
dependent energy spectrum (magenta), and zero-energy crossing
at ϕ ¼ 0, i.e., the red arrow in Fig. 2(c) (white). Total super-
current (b), with contributions from E0 (c) and E1 (d) energy
levels at the color-marked B values Fig. 2(c), repeated in (a).
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sensitive to SOC [44], with very large SOC inducing level
repulsion, which gaps the spectrum and thus destroys the
supercurrent π shift, see SM [55]. Interestingly, QD levels in
clearly nontopological Josephson junctions have previously
been shown to change the state of the junction from 0 to π
with increasingmagnetic field and also associatedwith a spin
exchange [19,67,69–75], fully consistent with our findings.
In conclusion, we demonstrate the emergence of zero-

energy states in the trivial phase of short S-N-S NW
junctions, due to strong NW-SC coupling causing a QD
formation in the NW and tunable by the SC width. Most
significantly, these zero-energy states produce a π shift in
the phase-biased supercurrent, making them easily distin-
guishable from MBSs appearing in the topological phase.
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