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Criticality in statistical physics naturally emerges at isolated points in the phase diagram. Jamming of
spheres is not an exception: varying density, it is the critical point that separates the unjammed phase where
spheres do not overlap and the jammed phase where they cannot be arranged without overlaps. The same
remains true in more general constraint satisfaction problems with continuous variables where jamming
coincides with the (protocol dependent) satisfiability transition point. In this work we show that by
carefully choosing the cost function to be minimized, the region of criticality extends to occupy a whole
region of the jammed phase. As a working example, we consider the spherical perceptron with a linear cost
function in the unsatisfiable jammed phase and we perform numerical simulations which show critical
power laws emerging in the configurations obtained minimizing the linear cost function. We develop a
scaling theory to compute the emerging critical exponents.
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Introduction.—The jamming transition of spheres is a
critical point [1]. At jamming, spheres form an isostatic
network [2] where the number of contacts between them
equals exactly the total number of degrees of freedom.
Furthermore, the distributions of forces and gaps (i.e.,
distances) between particles display power laws [3–6]
which play a central role in the mechanical and rheological
properties of such systems. In Refs. [7,8] the corresponding
critical exponents have been computed from the solution of
the hard sphere model in infinite dimension. In this analysis
the jamming transition is thought of as the infinite pressure
limit of hard sphere glassy states. Upon compression, hard
sphere glasses undergo a Gardner transition [9]: the glass
basins of configurations split into a “fractal landscape” of
just marginally stable metastable states, described by full
replica symmetry breaking (RSB) [10], with soft excita-
tions and divergent susceptibilities. Within this mean-field
scenario, these excitations are responsible for the anoma-
lous rheological response of amorphous solids [11–15]. In
the jamming limit this landscape marginality gives rise to
the power laws observed in the gaps and forces distribu-
tions and predicts the mechanical properties of amorphous
jammed packings.
Subsequently, it has been argued [16–18] that the jam-

ming transition can be thought of as a special case of a
satisfiability transition for constraint satisfaction problems
[19] with continuous variables (CCSP). In a generic CCSP
one seeks configurations of variables that satisfy a set
of constraints. From this viewpoint, jamming is the (pro-
tocol dependent) point that separates a satisfiable (SAT)
unjammed phase, where the spheres can be arranged to
satisfy the nonoverlapping constraints, from an unsatisfiable

(UNSAT) or jammed phase, where some constraints are
violated and spheres overlap. In this way, one can generalize
the problem of jamming to other situations. The simplest
one is borrowed from machine learning and is a nonconvex
twist of the perceptron classifier [20]. In Ref. [16] it
has been argued that at the satisfiability transition point
(meaning at jamming) this CCSP displays analogous power
law distributions of gaps and forces whose critical expo-
nents coincide with the corresponding exponents in spheres.
Nontrivial generalizations of the perceptron [21,22] retain
the same critical behavior.
However, the criticality of the gap and force distributions

both in spheres and in the perceptron is generically
attributed to the emergence of jamming and should dis-
appear in the jammed, UNSAT phase. This is supported by
analytical computations in the perceptron problem with
harmonic cost function and by numerical simulations on
harmonic soft spheres.
In this work, we show that this is not always the case:

changing the potential or cost function from harmonic to
linear, we find jamming criticality in an extensive region of
the UNSAT, jammed phase, far away from jamming.
We consider the UNSAT, jammed phase of the simplest

CCSP, the spherical perceptron model, and we look at local
minima of the linear cost function (instead of the harmonic
one). We show that even far from jamming, in an extensive
region of the phase diagram, the landscape induced by this
cost function is nonconvex and composed by metastable
minima which are all jamming critical. Indeed, for these
minima the positive and negative gap distributions display
power law divergences for small argument: surprisingly, the
critical exponents describing these power laws coincide
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with the corresponding critical exponents of the jamming
transition. Moreover, we find that this behavior is asso-
ciated with isostaticity: even when the model is in the
UNSAT phase, there is an extensive number of marginally
satisfied constraints, i.e., constraints that are right at the
border of satisfaction (like perfectly touching spheres). The
jamming-critical phase appears when the number of margi-
nally satisfied constraints equals the number of degrees of
freedom of the system which becomes therefore isostatic.
The spherical perceptron with linear cost function has

been studied in Refs. [23–25], where the phase diagram
was obtained using the replica method and studied at the
so-called replica symmetric level in Ref. [23]. While it was
known that RSB is needed in the UNSAT, jammed phase,
systematic studies beyond 1-RSB [25–27] were not under-
taken. Here we show that the emergence of RSB in the
UNSAT phase is related to the emergence of jamminglike
criticality.
Model.—The spherical perceptron is an optimization

problem defined through an N-dimensional vector w on
the N-dimensional hypersphere jwj2 ¼ N and by a set of
M ¼ αN N-dimensional random vectors fξμg whose com-
ponents are independent identically distributed Gaussian
random variables with zero mean and unit variance. For
each of these vectors one defines the gap hμ by

hμ ¼
1ffiffiffiffi
N

p ξμ · w − σ: ð1Þ

We say that a gap hμ is (i) satisfied if hμ > 0, (ii) marginally
satisfied if hμ ¼ 0, and (iii) unsatisfied if hμ < 0. The
variables σ and α are control parameters. One can define an
energy or cost function associated with the unsatisfied
gaps as

H½w� ¼ 1

p

XαN
μ¼1

jhμjpθð−hμÞ; ð2Þ

and study its minima. Equation (2) depends on a parameter
p that sets the strength of the cost when gap variables are
unsatisfied. The harmonic perceptron corresponds to p ¼ 2
and has been studied in Refs. [17,18]. Here we set p ¼ 1,
which defines the linear cost function. This cost function is
not very used in soft matter systems but it is common in the
machine learning literature where it is called hinge loss and
plays an important role in support vector machines [28].
Furthermore, the case p ¼ 1 marks the boundary where H
passes from a convex (p > 1) to a nonconvex (p < 1)
function of each of the hμ’s. We stress, however, that the
convexity of H in the hμ’s does not necessarily imply
convexity of H in the variables w that live on the hyper-
sphere: the loss of convexity is indeed associated with
glassiness.

The phase diagram of the spherical perceptron with
linear cost function was obtained for σ > 0 in Ref. [23] (see
also Ref. [25]) and is redrawn in Fig. 1 in terms of the
control parameters σ and α. It contains two regions
separated by the SAT-UNSAT transition line (red line in
Fig. 1). Below this line, the problem is SAT (or unjammed),
meaning that with probability one, for N → ∞, there are
configurations of w for which the cost function is strictly
zero; i.e., the gaps hμ are satisfied for all μ ¼ 1;…; αN.
Conversely, above this line, the cost function is positive and
an extensive number of gaps are unsatisfied: this is the
UNSAT, jammed phase. In Fig. 1 we plot also the de
Almeida–Thouless (RSB) line [29] (dashed black line):
below this line and in the UNSAT phase, the energy
landscape is effectively convex and the linear cost function
has a unique global minimum. Above this line, convexity is
lost and multiple metastable minima emerge. We are
interested in studying the properties of these local minima.
Numerical simulations.—Local minima of the linear cost

function turn out to be nonanalytic angular points deter-
mined by the intersection of hyperplanes. We smooth out
the singularity at hμ ¼ 0 and define a regularized cost
function as

FIG. 1. The phase diagram of the spherical perceptron with
linear cost function. The y axis represents the density of
constraints α ¼ M=N, while the x axis is the control parameter
σ that defines the gap variables; see Eq. (1). The red solid line is
the SAT-UNSAT (jamming) line (computed under the replica
symmetric approximation, exact only for σ > 0). Below this line
the model is SAT, unjammed and one can find zero energy
configurations. Above, the problem is UNSAT, jammed and the
energy is positive. Above the black dashed line replica symmetry
spontaneously breaks down: below this line the problem is
convex, while above, the energy landscape is glassy with many
local minima with critical properties. The jamming line lies in the
RS region for σ > 0 and in the RSB region for σ < 0. Inset: The
density of contacts c for α ¼ 5 as a function of σ. The red line
corresponds to the theoretical prediction. We have hypostaticity
c < 1 in the RS phase and isostaticity, i.e., c ¼ 1, in the RSB
phase. The dots come from numerical simulations withN ¼ 1024
at α ¼ 5.
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Hε½w� ¼
XαN
μ¼1

����hμ þ ε

2

����θð−hμ − εÞ þ ζ

4
ðjwj2 − NÞ2

þ 1

2ε

XαN
μ¼1

h2μθðεþ hμÞθð−hμÞ; ð3Þ

where ε > 0 and ζ is an arbitrary large constant needed to
enforce the spherical constraint jwj2 ¼ N. We implemented
the numerical minimization of Hε½w� using the routine
BFGS [30] of the SCIPY library [31]. For every ε, the algo-
rithm reaches a local minimum. In order to describe the
properties of the linear cost function, we need to study the
minima when ε → 0þ. Therefore, we consider a decreasing
sequence of values of ε and minimize the cost function at
each step (see Supplemental Material for details [32]). We
observe that for ε small enough there is an extensive fixed
set of gaps in the interval D ¼ ½−ε; 0�. Decreasing ε, these
gaps remain in D, indicating that for ε → 0þ they become
marginally satisfied: we call them contacts in analogy with
sphere packings. We define the empirical distribution of

gaps as ρðhÞ ¼ ð1=MÞPM
μ¼1 δðh − hμÞ, where the average

is taken over many different realizations of the random
vectors fξμg. Therefore, for ε → 0þ, ρðhÞ contains a Dirac
delta at h ¼ 0. Calling ID the total number of contacts, we
can define an isostaticity index c ¼ ID=N. In the inset of
Fig. 1 we plot c as a function of σ for α ¼ 5. When replica
symmetry is unbroken (RS), c < 1, and we say that minima
are hypostatic. Conversely, when the minimization is
carried in the RSB region, we find c ¼ 1, and therefore
we say that minima are isostatic.
Once the contacts are identified we construct the stati-

stics of strictly positive and negative gaps. We study what
happens to ρðhÞ when h → 0�. In the RS-UNSAT phase,
ρðh → 0�Þ → A�, with A� being two positive nonuniver-
sal constants that depend on the control parameters. In the
RSB region instead we observe that ρðh → 0�Þ ∼ jhj−γ� ,
where γ� are two critical exponents. In Fig. 2, we plot the
cumulative distributions of both positive and negative gaps
for minima with an average energy of hHi=N ¼ 1.01�
0.02, therefore far away from the jamming transition. Both
distributions display a nontrivial power law for small
argument. The critical exponents γ� are very close to each
other and have numerical value γþ ≈ γ− ≈ 0.41, which is
compatible with the critical exponent γJ that controls the
positive gaps distribution at jamming transition [7].
Moreover, we can obtain the virtual forces f̂ associated
to contacts [16]. These are defined as the Lagrange multi-
pliers needed to enforce that the corresponding gaps are
identically zero [33]. Their empirical distribution is defined

as ρfðf̂Þ ¼ ð1=cNÞPi∈D δðf̂ − f̂iÞ and has support in
[0, 1]. We find that while in the convex phase ρfðf̂Þ is
regular at both edges, in the RSB phase it becomes
critical, with pseudogaps close to both edges of its support,
ρfðf̂Þ ∼ f̂θ and ρfðf̂Þ ∼ ð1 − f̂Þθ0 for f̂ ∼ 0þ and for

f̂ ∼ 1−, respectively. In Fig. 3, we plot the cumulative
distribution of forces as a function of both f̂ and 1 − f̂ as
obtained from simulations: we observe two power laws
with exponents θ ≃ θ0 ≃ 0.42, again compatible with the
critical exponent θJ that controls the distribution of small
forces at jamming.

FIG. 2. The cumulative distribution function (CDF) of both
strictly positive and strictly negative gaps for N ¼ 1024 and
α ¼ 5. We compare the distributions in the UNSAT-RSB and
UNSAT-RS regions. The RSB data refer to minima at an average
energy H=N ¼ 1.01� 0.02, and the corresponding value of σ is
σ ¼ 0.219� 0.004. Both positive and negative gaps’ distribu-
tions are compatible with a power law at small argument with
exponent 1 − γJ ≃ 0.59 (black full line). The RS data refer to
minima with H=N ¼ 2.540� 0.013 and σ ¼ 0.757� 0.010.
One sees there a linear behavior of the CDF, implying a positive
probability density function in the origin.

FIG. 3. The CDF of the virtual forces presented as a function of
both f̂ and 1 − f̂ for the same parameters as in Fig. 2. In the RSB
phase the distribution of forces vanishes as a power law both in
f̂ ¼ 0 and in f̂ ¼ 1 (purple line in the inset), and both powers are
compatible with θJ ≃ 0.42 corresponding to a CDF with a power
1.42. In the RS region the behavior is linear and the PDF is finite
at both edges of its support (yellow line in the inset). The datasets
presented in the inset correspond to hHi=N ≃ 2; 3 for RSB and
RS curves respectively.
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Therefore, numerical simulations show that when the
energy minimization is carried out in the RSB-UNSAT
phase, there are three classes of small gaps: an isostatic set
of gaps that are identically zero and two sets of positive and
negative gaps that accumulate around zero. Furthermore,
the marginally satisfied gaps are associated to a critical
distribution of virtual forces. Unlike for the harmonic case,
here scaling behavior emerges even in the UNSAT phase
far from jamming.
Theory.—We analyze the thermodynamic phase diagram

of the model using the replica method. Similarly to the case
of the jamming transition in spheres and in the nonconvex
perceptron, the UNSAT critical phase is associated with
scaling behavior that controls the universality of the gaps
and forces distributions. However, in the case of the
jamming transition, there is a single scaling region that
describes small positive gaps and forces. Instead, in the
present case we also have two additional power laws
describing small negative gaps and virtual forces close
to one. This corresponds to the emergence of an additional
scaling region. Both regions can be theoretically identified
from the replica analysis. Here we sketch the main steps;
details are in the Supplemental Material [32]. The phase
diagram and the properties of the model can be obtained by
studying the zero temperature limit β ¼ 1=T → ∞ of its
free energy [34]:

f ¼ −
1

βN
ln
Z

dwe−βH½w�; ð4Þ

where the overline stands for the average over the random
vectors ξμ. The disorder average can be performed using the
replica method [18,24]. The RSB phase is described by the
probability distribution of the overlap q ¼ w1 · w2=N
between different configurations and is captured by the
following partial differential equations [10,35], valid for
real values of h and for q in an interval q ∈ ½qm; qM� ⊂
½0; 1� determined self-consistently:

∂mðq;hÞ
∂q ¼ −

1

2
m00ðq;hÞ− xðqÞ

λðqÞmðq;hÞ½1þm0ðq;hÞ�;

∂Pðq;hÞ
∂q ¼ 1

2

�
P00ðq;hÞ− 2

xðqÞ
λðqÞ ½Pðq;hÞmðq;hÞ�0

�
; ð5Þ

where the primes indicate partial derivatives with respect to
h, and the boundary conditions are given by

mðqM; hÞ ¼ ð1 − qMÞ
∂
∂h ln γ1−qM⋆e

−βjhjθð−hÞ;

Pðqm; hÞ ¼ γqmðhþ σÞ: ð6Þ

γΔ is a Gaussian with zero mean and variance Δ and ⋆
stands for the convolution operation. The function xðqÞ is
directly related to the distribution of the overlap q [10], and

we have defined λðqÞ ¼ 1 − qM þ R
qM
q dpxðpÞ. At large β,

one can get the distribution of virtual forces and gaps from
the solution of Pðq; hÞ in the limit q → 1. We analyze
Eq. (5) in the β → ∞ limit in the RSB-UNSAT phase and
show that they admit a scaling solution which accounts for
the power laws observed in numerical simulations. In the
UNSAT phase, for β → ∞ one has qM → 1. In the limit
0 < 1 − q ≪ 1, two scaling regimes emerge for mðq; hÞ.
One concerns the region h ¼ Oð ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p Þ, analogue to the

one found at jamming [7], and a new one associated to
negative gaps for h ¼ −λ̂ðqÞ þOð ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p Þ, where λ̂ðqÞ ¼

limβ→∞βλðqÞ ≃ ð1 − qÞðκ−1Þ=κ ≫ ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
(with κ < 2 a

critical exponent). Therefore, we can write

mðq;hÞ¼

8>><
>>:
−

ffiffiffiffiffiffiffiffiffiffi
1−q

p
Mþ

�
hffiffiffiffiffiffi
1−q

p
�

jhj∼ ffiffiffiffiffiffiffiffiffiffi
1−q

p

−hþ ffiffiffiffiffiffiffiffiffiffi
1−q

p
M−

�
hþλ̂ðqÞffiffiffiffiffiffi

1−q
p

	
hþ λ̂ðqÞ∼ ffiffiffiffiffiffiffiffiffiffi

1−q
p

:

ð7Þ
It turns out that the two scaling functions are related by the
symmetry relation M−ðtÞ ¼ tþMþð−tÞ. Moreover, we
find that the scaling function Mþ satisfies the same
equation that appears at critical jamming transitions
[8,18]. At the same time, the function Pðq; hÞ admits the
scaling form

Pðq;hÞ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

pþðhÞ h≫
ffiffiffiffiffiffiffiffiffiffi
1−q

p

ð1−qÞ−a=κp0

�
hffiffiffiffiffiffi
1−q

p
�

h∼
ffiffiffiffiffiffiffiffiffiffi
1−q

p

λ̂ðqÞ−1p−ðhλ̂ðqÞ−1Þ −h∼ λ̂ðqÞ

ð1−qÞ−a=κp̃0

�
hþλ̂ðqÞffiffiffiffiffiffi

1−q
p

	
jhþ λ̂ðqÞj∼ ffiffiffiffiffiffiffiffiffiffi

1−q
p

p̃þðhþ λ̂ðqÞÞ hþ λ̂ðqÞ≪−
ffiffiffiffiffiffiffiffiffiffi
1−q

p
:

ð8Þ
The scaling functions pþðtÞ and p̃þðtÞ control, respec-
tively, the distribution of small positive and negative gaps.
Furthermore, p̃0ðtÞ ¼ p0ð−tÞ and p0ðtÞ satisfies again a
scaling equation that is exactly the same as the one
appearing at critical jamming [8,18]. This analysis implies
that the exponents verify γþ ¼ γ− ¼ γJ and θ ¼ θ0 ¼ θJ,
with γJ ≃ 0.41 and θJ ≃ 0.42 the critical exponents con-
trolling the gap and force distributions at the jamming point
of hard spheres. Finally, the nature of the scaling solution
implies that the distribution of gaps has an isostatic delta
peak of marginally satisfied gaps, so we get

ρðhÞ∼ ρþh−γθðhÞ þ ρ−ð−hÞ−γθð−hÞ þ
1

α
δðhÞ; h→ 0;

ð9Þ

with ρþ and ρ− two positive constants.
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Conclusions.—We have analyzed the properties of the
UNSAT phase of the spherical perceptron with a linear cost
function. In the RS phase the landscape is effectively
convex and the global minimum is not critical and
hypostatic. When instead the minimization is carried out
in the RSB phase, we find that local minima are jamming
critical. They are described by an isostatic number of
contacts and the distributions of gaps and virtual forces
follow power laws whose exponents are the same as the
ones characterizing jamming of hard spheres. We have
proposed a scaling solution of the RSB equations that
agrees with the emerging criticality. There are two clear
future directions. First, it will be interesting to understand
what happens to the model if we change the cost function to
a nonconvex function of the gaps ([.e., p < 1 in Eq. (2)].
Furthermore, it will be interesting to study linear cost
functions in other CCSPs, and see if this leads to universal
critical jammed phases as it happens in the perceptron. We
expect that this property is generic within mean field, and
our scaling solution extends to high dimensional spheres,
multilayer neural nets, etc., [21,22]. More interesting are
problems that are not mean field in nature. For finite
dimensional spheres the critical exponents of jamming have
been shown to be independent of spatial dimension within
numerical accuracy [6]. It would be interesting to inves-
tigate if the same property holds for the jammed phase of
linear soft spheres. We are working in this direction. This
may provide a finite dimensional physical system with an
extended jamming-critical phase where RSB effects could
be tested.
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