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We present an experimental study on nonequilibrium dynamics of a spinor condensate after it is
quenched across a superfluid to Mott insulator (MI) phase transition in cubic lattices. Intricate dynamics
consisting of spin-mixing oscillations at multiple frequencies are observed in time evolutions of the spinor
condensate localized in deep lattices after the quantum quench. Similar spin dynamics also appear after
spinor gases in the MI phase are suddenly moved away from their ground states via quenching magnetic
fields. We confirm these observed spectra of spin-mixing dynamics can be utilized to reveal atom number
distributions of an inhomogeneous system, and to study transitions from two-body to many-body
dynamics. Our data also imply the nonequilibrium dynamics depend weakly on the quench speed but
strongly on the lattice potential. This enables precise measurements of the spin-dependent interaction, a key
parameter determining the spinor physics.
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Spinor Bose-Einstein condensates (BECs) are multi-
component condensates possessing a spin degree of free-
dom [1]. Combined with optical lattices and microwave
dressing fields, spinor gases offer an unprecedented degree
of control over many parameters and have thus been
considered as ideal candidates for studying nonequilibrium
dynamics [1–12]. Such a system can be easily prepared far
away from equilibrium through quenching one of its highly
controllable parameters, e.g., the number of atoms, temper-
ature, total spin of the system, the lattice potential, or the
dimensionality of the system [1–10]. Interesting dynamics
have also been initiated in lattice-confined spinor gases by
nonequilibrium initial states, such as interaction-driven
revival dynamics in one-dimensional Ising spin chains
[13], dynamics and equilibration of spinor BECs in two-
dimensional lattices [3], and spin-mixing dynamics of
tightly confined atom pairs in cubic lattices [14,15].
Another notable advantage of spinor systems on inves-
tigating nonequilibrium dynamics is their long equilibra-
tion time, ranging from tens of milliseconds to several
seconds [1,3]. Experimental studies on nonequilibrium
dynamics have been conducted in spinor gases extensively
at two extremes, i.e., in a clean two-body system with a pair
of atoms in the Mott-insulator (MI) phase [14,15], and in a
many-body system with more than 104 atoms in the
superfluid (SF) phase [1–4]. Transitions between these
two extremes, however, remain less explored [5].
In this Letter, we experimentally confirm that lattice-

trapped spinor BECs provide a perfect platform to under-
stand these less-explored transitions. Our experiments are
performed in a quantum quench scenario starting with an
antiferromagnetic spinor BEC at its SF ground state, based

on a theoretical proposal in Ref. [5]. We continuously
quench the potential of a cubic lattice to a very large value,
completely suppressing tunnelings to freeze atom number
distributions in individual lattice sites. Spin dynamics are
observed at fast quench speeds, and adiabatic SF-MI
quantum phase transitions are detected after sufficiently
slow lattice ramps. About half of the data shown in this
Letter are collected after the lattice is quenched at an
intermediate speed, which is slow enough to prevent
excitations to higher vibrational bands while remaining
fast enough to suppress hopping among lattice sites. We
observe dynamics consisting of spin-mixing oscillations at
multiple frequencies in spinor BECs after the quantum
quench in magnetic fields of strength B < 60 μT. The
remaining data are taken after adiabatic lattice ramps.
Similar spin dynamics also occur after we abruptly move
spinor gases in the MI phase away from their ground states
via quenching magnetic fields. In our system, an inhomo-
geneous system with an adjustable peak occupation number
per lattice site (npeak), a significant amount of lattice sites
are occupied by more than two atoms. The observed spin-
mixing spectra are thus utilized to study transitions between
two-body and many-body spin dynamics and to reveal
atom number distributions of an inhomogeneous system.
Our data also indicate the nonequilibrium dynamics depend
weakly on the quench speed but strongly on the lattice
potential. We find every observed spin dynamics is well
described by a sum of multiple Rabi-type spin-mixing
oscillations. This enables us to precisely measure the ratio
of the spin-independent interaction U0 to the spin-depen-
dent interaction U2, an important factor determining the
spinor physics.
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The site-independent Bose-Hubbard model has success-
fully described lattice-confined spinor BECs [5,16,17]. We
can understand our data taken in deep lattices with a
simplified Bose-Hubbard model by ignoring the tunneling
energy J as follows [5,17]:

H¼U0

2
nðn−1ÞþU2

2
ðS⃗2−2nÞþqðn1þn−1Þ−μn: ð1Þ

Here, q is the net quadratic Zeeman energy induced by
magnetic and microwave fields, μ is the chemical potential,
n ¼ P

mF
nmF

is the total atom number in each lattice site

with nmF
atoms staying in the hyperfine mF state, and S⃗ is

the spin operator [5,17].
We start each experimental cycle at q=h ¼ 40 Hz in free

space with a spin-1 antiferromagnetic spinor BEC of up to
105 sodium atoms in its ground state, the longitudinal polar
(LP) state with ρ0 ¼ 1 and m ¼ 0 [18]. Here ρmF

is the
fractional population of the mF state, m ¼ ρþ1 − ρ−1 is the
magnetization, and h is the Planck constant. Two different
quench sequences, Quench-L and Quench-Q, are applied in
this Letter [18]. In the Quench-L sequences, we tune
magnetic fields to a desired q and then quench up the
depth uL of a cubic lattice from 0 to 28ð2ÞER within a time
duration tramp, where ER is the recoil energy [18]. This final
depth uL is much larger than SF-MI transition points and
thus deep enough to localize atoms into individual lattice
sites. In the Quench-Q sequences, we adiabatically ramp up
cubic lattices to a final depth of uL ≥ 28ER in a high field
(where q ≫ U2), which ensures atoms cross SF-MI tran-
sitions and enter into their ground states (where ρ0 ≃ 1) in
the MI phase [16], and we then suddenly quench magnetic
fields to a desired q for initiating nonequilibrium dynamics.
After each quench sequence, we hold atoms in lattices for a
certain time thold, then measure ρ0 based on Ref. [18].
Nonequilibrium dynamics consisting of spin-mixing

oscillations at multiple frequencies are observed after both
Quench-L and Quench-Q sequences in spinor gases local-
ized in deep lattices at q=h < 100 Hz. Two typical time
evolutions detected after Quench-Q sequences are shown
in Fig. 1(a). Such an evolution appears to be fit by a
composition of multiple Rabi-type oscillations [see solid
lines in Fig. 1(a) and Eq. (2)]. This can be explained by
considering that n atoms tightly confined in one lattice site
display a Rabi-type oscillation at a fixed frequency fn, and
the observed dynamics combine all time evolutions occur-
ring in individual lattice sites for our inhomogeneous
system. We derive fn ¼ En=h from Eq. (1), where En is
the energy gap between the ground state and the first excited
state in the subspace of m ¼ 0 at a given n [see Fig. 1(b)].
Analytical expressions for fn can be found at n ¼ 2 and
n ¼ 3, i.e., f2 ¼ U2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4ðq=U2Þ þ 4ðq=U2Þ2

p
=h and

f3 ¼ U2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 4ðq=U2Þ þ 4ðq=U2Þ2

p
=h. We develop the

following empirical formula based on the predicted fn for an
inhomogeneous system with a certain npeak, and find all

observed spin dynamics can be fit by this formula [see
typical examples in Fig. 1(a) and Ref. [18] ],

ρ0ðtÞ ¼
Xnpeak

n¼2

An expð−t=τnÞ sin ½2πfnðt − t0Þ�

þ Δρ0 expð−t=τ0Þ þ
1

3
: ð2Þ

Here, the first term combines individual Rabi-type oscil-
lations at all possible n with 1=τn being the damp rate for
oscillation amplitudes and t0 marking the beginning of
oscillations, while the second term describes an overall
decay of spin oscillations at a decay rate of 1=τ0. This decay
may be mainly due to unavoidable lattice-induced heatings.
The third term of Eq. (2) indicates the three spin components
equally distribute in equilibrium states when thold → ∞
[3,19]. The validity of Eq. (2), a conservative model, may
be justified by the fact that observed atom losses are less than
10% within every time evolution studied in this Letter.
To better illustrate the spin-mixing dynamics, we con-

duct fast Fourier transformations (FFT) onto all observed
time evolutions. Two typical FFT spectra extracted from the
same dataset over different time durations are shown in
Fig. 2(a), where the vertical lines mark the five fn predicted
by Eq. (1). Each of these two FFT spectra has five
distinguished peaks agreeing well with the predictions of
Eq. (1); i.e., all spin components in the three even Mott
lobes oscillate at lower frequencies while particles in
the two odd Mott lobes display higher spin oscillation

FIG. 1. (a) Observed spin dynamics after Quench-Q sequences
to different q. Lines are fits based on Eq. (2) [18]. (b) Lines
denote the predicted energy En ¼ hfn (see text).
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frequencies when q=U2 < 1.55. Atom number distribu-
tions in the spinor gases can also be revealed from the
corresponding FFT spectrum over a given time duration, as
explained in Figs. 2(b) and 2(c). A comparison between
these two figures clearly demonstrates that number dis-
tributions χn in our system quickly change with time thold
and the n ¼ 2 Mott lobe becomes more dominating after
atoms are held in deep lattices for a longer time. This

implies atoms in the n ¼ 2 Mott lobe decay more slowly,
which may be owing to a lack of three-body inelastic
collisions in this lobe. Figure 2(b) shows another notable
result: each experimental χn extracted from the FFT
spectrum over a short time duration (i.e., thold ¼ 40 ms)
coincides with the theoretical χn derived from Eq. (1) and
the Thomas-Fermi approximation for Mott-insulator shells
at npeak ¼ 6. Atoms in initial states distribute into these
predicted Mott shells during the Quench-Q sequences,
because the initial states are the ground states of the MI
phase. Our data thus experimentally confirm that the spin-
mixing dynamics and their corresponding FFT spectra over
a short thold can efficiently probe the initial Fock-state
distributions after a sufficiently fast quench.
Similar nonequilibrium dynamics are also detected in

time evolutions of spinor gases after Quench-L sequences
under a wide range of magnetic fields (see Fig. 3). To our
knowledge, thismay be the first experimental observation of
such complicated spin-mixing dynamics, although its theo-
retical model has been studied by Ref. [5]. Our observations
indicate the spin-mixing dynamics weakly depend on tramp
[21]. Typical examples can be seen in Fig. 3(a), where the
data sets collected at distinct tramp display similar dynamics
with almost identical oscillation frequencies and slightly
different oscillation amplitudes. This may be due to the fact
that tramp in a Quench-L sequence is carefully chosen for
limiting all spin components to oscillate between the ground
states and the first excited states.
The spin oscillations observed after Quench-L sequences

can also be well fit by Eq. (2) [see Fig. 3(a)]. We can extract
the spin-dependent interactionU2 from these fitting curves,
because U2 decides frequency fn when n ≥ 2 at a fixed q.
Figures 3(b) and 3(c) show 20 experimental values of U2

extracted from our data taken under very different con-
ditions. By applying linear fits to these data points, we find
a precise value for two key parameters that determine
the spinor physics, i.e., U2=U0 ≃ 0.035ð3Þ and a2=a0 ≃
1.115ð10Þ for 23Na atoms. Here a2 and a0 are s-wave
scattering lengths, and a2=a0 ¼ ðU2 þ U0Þ=ðU0 − 2U2Þ
based on Refs. [25,26]. Many published values of

FIG. 2. (a) Triangles (circles) represent fast Fourier trans-
formations (FFT) over the first 40 ms (80 ms) of thold on the
q=h ¼ 85 Hz dataset shown in Fig. 1(a). Vertical lines mark the
predicted fn (see text). Solid lines are five-Gaussian fits. Results
obtained at thold ¼ 40 ms are shifted up by 0.4 for visual clarity.
(b) Atom number distributions extracted from the thold ¼ 40 ms
FFT spectrum in panel (a). We define χn as the fraction of atoms
localized in lattice sites having n atoms, and extract χn from
dividing the area below the corresponding peak in a FFT
spectrum by the spin oscillation amplitude Dn (see Ref. [20]).
Black bars mark the predicted χn in Mott-insulator shells at
npeak ¼ 6 based on Eq. (1) and the Thomas-Fermi approximation.
(c) Similar to panel (b) but extracted from the thold ¼ 80 ms FFT
spectrum in panel (a).

FIG. 3. (a) Observed spin dynamics after Quench-L sequences at two tramp. Lines are fits based on Eq. (2). Data taken at tramp ¼ 1.5 ms
are shifted up by 0.1 for visual clarity. (b) ExtractedU2 andU2=U0 from fitting observed dynamics with Eq. (2) at various tramp [23]. The
horizontal line is a linear fit. (c) Similar to panel (b) but based on our data taken under 20 different conditions. The right axis marks the
corresponding ratio a2=a0 ¼ ðU2 þ U0Þ=ðU0 − 2U2Þ, where a0 and a2 are scattering lengths.
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U2=U0 were derived from the scattering lengths
[5,27–33]. For example, Refs. [27,28], respectively, found
scattering lengths that would lead to U2=U0 ¼ 0.032ð14Þ
and 0.035(11). In addition, measuring the scattering lengths
through Feshbach spectroscopy could yield U2=U0 ¼
0.037ð6Þ [29] and 0.036(3) [30]. Therefore, the observed
spin dynamics can conveniently measure spin-dependent
interactions and U2=U0 with a good resolution.
We also notice one puzzling difference between the

nonequilibrium dynamics initiated by Quench-L and
Quench-Q sequences: atoms appear to oscillate with a larger
amplitude despite having the same frequencies after the
Quench-Q sequence, even if spinor gases are prepared into
the same final uL and q by these two quench sequences. This
amplitude difference may be attributed to the inevitable
dephasing and energy dissipations induced by a number of
tunneling processes. Note that atoms are fully localized in
individual lattice sites with negligible tunnelings during
Quench-Q sequences. In contrast, spinor gases cross SF-
MI phase transitions during a Quench-L sequence, tunnel-
ings among adjacent sites thus cannot be ignored during a
certain part of this sequence. Other possible reasons for the
different oscillation amplitudes may include significant
heatings induced by first-order SF-MI phase transitions at
a small q during Quench-L sequences [16], different atom
number distributions introduced by the quench sequences
[34], and nonadiabatic lattice ramps in Quench-L sequences.
To understand how tunnelings affect the spin-mixing

dynamics, we monitor spin oscillations after varying the
tunneling energy J in a well-controlled way [8]. We first
prepare a nonequilibrium initial state with a Quench-Q
sequence to q=h ¼ 30 Hz in a very deep cubic lattice of
uL;x ¼ uL;y ¼ uL;z ¼ 33ð3ÞER with J ≃ 0, and then sud-
denly increase J to a desired value by properly reducing
only one lattice depth uL;z. Here uL;x, uL;y, and uL;z are
depths of the three lattice beams along orthogonal direc-
tions, respectively. Results shown in Fig. 4 are collected at
four signature uL;z, gradually spanning from the few-body
dynamics for spinor gases tightly localized in deep lattices
at uL;z ¼ 33ER with J ≃ 0, to the many-body dynamics for
atoms loosely confined in shallow lattices with J ≫ 0 at
uL;z ¼ 12ER. Amplitudes of spin-mixing oscillations
appear to quickly decrease as uL;z is reduced, and com-
pletely vanish when uL;z < 14ER. We may understand
these observations from two simple illustrations. In one
scenario, two atoms oscillate at the frequency f2 in an n¼2
lattice site. The spin oscillation disappears as one of the two
atoms tunnels out of the site. In another scenario, n > 2
atoms oscillate in a lattice site at frequency fn. After one
atom hopping out of this site, spin oscillations occurring in
this site and the adjacent site that accepts the atom should
be changed. The occurrence of many of such tunneling
events could significantly reduce oscillation amplitudes
of the observed spin-mixing dynamics. As J increases
with the reduction of uL;z, the damping is enhanced and

eventually stops the spin oscillations. As a numerical
example, the predicted damp time constant due to tunnel-
ings is 11 ms at uL;z ¼ 19ER [8], which is comparable
to the experimental τn of around 15 ms extracted from
Fig. 4(a). These results justify our use of deep lattices and
subsequent neglecting of J in Eq. (1). The underlying
physics of the damped spin dynamics and its connection
with the Schwinger boson model [35,36] are worthy of
further investigation.
Figure 4(b) show the FFT spectra extracted from the

nonequilibrium dynamics observed at the four uL;z. Each of
these FFT spectra has only two distinguished peaks rather
than the predicted five peaks; i.e., the wide peaks at around
250 Hz correspond to the oscillations of even n atoms and
the wide peaks at around 450 Hz to the oscillations of odd n
atoms. One possible reason for this discrepancy is thold
needs to be much longer (greater than 160 ms for all even n)
to reduce the aliasing effect of the spectrum analysis, but
thold in our system is limited by lattice heatings and atom
losses. The FFT spectra in Fig. 4(b), however, clearly show
that a larger uL;z leads to spin oscillations of higher
frequencies. This can be interpreted by the fact that
frequency fn is determined by U2 and thus also by the
effective lattice depth uL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiuL;xuL;yuL;z3

p . Our calculations
confirm that the effective U2 gives oscillation frequencies
that fall into those broad peaks seen in Fig. 4(b).
In conclusion, we have presented the first experimental

study on few-body spin dynamics and transitions between
the well-studied two-body and many-body dynamics in

(a) uL,Z = 33ER uL,Z = 25ER

uL,Z = 19ER uL,Z = 12ER

(b) uL,Z = 33ER uL,Z = 25ER

uL,Z = 19ER uL,Z = 12ER
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FIG. 4. (a) Observed spin dynamics after Quench-Q sequences
to q=h ¼ 30 Hz at various uL;z while uL;x ¼ uL;y ¼ 33ð3ÞER (see
text). Results obtained at uL;z ¼ 33ð3ÞER, 25ð2ÞER, and 19ð2ÞER

are, respectively, shifted up by 0.55, 0.25, and 0.06 for visual
clarity. Lines are fits based on Eq. (2). (b) FFT spectra of the
dynamics shown in panel (a). Lines are two-Gaussian fits.
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antiferromagnetic spinor BECs. Dynamics consisting of
spin-mixing oscillations at multiple frequencies, as opposed
to the singular frequency seen in a BEC of thousands of
atoms in the superfluid phase, have been observed in time
evolutions of the spinor condensate localized in deep lattices
after two quench sequences. Unlike the many-body spin
dynamics, especially those interpreted by the single mode
approximation in Refs. [1–3], the spin-mixing oscillations
presented in this Letter indicate quantum recurrences
induced by discrete energy spectra [5]. We have confirmed
our observed spin-mixing dynamics can reveal atom number
distributions of an inhomogeneous system and also enable
precise measurements of two key parameters. The lattice
quench method is applicable to other spinor systems.
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