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We show that using complex, spin-restricted orbitals in Kohn-Sham (KS) density functional theory
allows one to access a new class of densities that is not accessible by either spin-restricted (RKS) or spin-
unrestricted (UKS) orbitals. We further show that the real part of a complex RKS (CRKS) density matrix
can be nonidempotent when the imaginary part of the density matrix is not zero. Using CRKS orbitals
shows significant improvements in the triplet-singlet gaps of a benchmark set, called TS12, for well-
established, widely used density functionals. Moreover, it was shown that RKS and UKS yield qualitatively
wrong charge densities and spin densities, respectively, leading to worse energetics. We demonstrate that
representative modern density functionals show surprisingly no improvement even with a qualitatively
more accurate density from CRKS orbitals. To this end, our work not only provides a way to escape the
symmetry dilemma whenever there exists a CRKS solution, but also suggests a new route to design better
approximate density functionals.
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Introduction.—Since its invention, Kohn-Sham density
functional theory (KS-DFT) [1–3] has become the work-
horse of ab initio nonrelativistic simulation of molecules
and materials in condensed matter physics, materials
science, chemistry, and other related disciplines. Given
its computational efficiency and accuracy, it is well suited
for a variety of applications including ab initio molecular
dynamics simulations. Despite its popularity, two issues in
practical KS-DFT remain unsolved: (i) strong correlation
and (ii) self-interaction error [3,4]. In this Letter, we
elucidate some aspects of KS-DFT regarding the first issue
(i.e., strong correlation), which will help to further broaden
the applicability of KS-DFT.
In KS-DFT, it is clear that for systems with antiferomag-

netically coupled open-shell electrons, spin-unrestricted
KS-DFT (UKS) behaves better than spin-restricted
KS-DFT (RKS) at the expense of spin polarization [5–7].
For finite-sized systems, this spin polarization is a manifes-
tation of the lack of strong (or static) correlation in a single-
determinant wave function [8,9]. This is known as a
symmetry dilemma in KS-DFT, so called because exact
solutions for finite systems should not break spin symmetry
yet the unphysical, spin-symmetry-broken approximate
solutions often provide lower energies than symmetric
approximate solutions.
As an attempt to address this symmetry dilemma,

Perdew and co-workers proposed the use of “on-top” pair
density [9,10], ΠðrÞ, which is defined as

ΠðrÞ ¼ ραðrÞρβðrÞ: ð1Þ

Instead of working with spin density variables ραðrÞ and
ρβðrÞ, the fundamental variables are now the charge
density ρðrÞ ¼ ραðrÞ þ ρβðrÞ and the magnetization den-
sity mðrÞ, which is a function of ρðrÞ and ΠðrÞ. One can
accomplish the one-to-one mapping between mðrÞ and
ΠðrÞ following

mðrÞ ¼ ρðrÞ
�
1 −

4ΠðrÞ
ρðrÞ2

�
1=2

: ð2Þ

Evidently, inserting Eq. (1) into Eq. (2) yields a more
familiar definition of the magnetization density,
mðrÞ ¼ ραðrÞ − ρβðrÞ. With ρðrÞ and mðrÞ, one can back
out ραðrÞ and ρβðrÞ and these can be used to compute the
exchange-correlation (XC) potential, vxcðrÞ. This frame-
work allows one to treatmðrÞ as an auxiliary variable that is
closely related to the on-top pair density. However, this
does not remedy problems arising from evaluating vxcðrÞ
with spin densities.
In this Letter, we describe a way to access a new class of

charge and spin densities that is not accessible by spin
polarization. This is achieved by breaking time-reversal
symmetry and complex symmetry of the KS-DFT deter-
minant [11–14]. We will refer to this symmetry breaking as
“complex polarization.” For semilocal functionals, we
show that this complex polarization does not pose any
dilemma in obtaining charge and spin densities. We
illustrate how this is achieved and demonstrate the numeri-
cal performance of popular semilocal functionals on
chemical systems where complex polarization is essential
to obtain correct charge and spin densities.
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Theory.—We start from the KS-DFT Lagrangian [15],

L½P� ¼ EKS-DFT½P� þ μ

�
trðPÞ − N

2

�
þ tr½AðP2 − PÞ�

þ tr½BðP† − PÞ�; ð3Þ

where N is the number of electrons, P is a one-particle
density matrix (1PDM), μ, A, and B are Lagrange multi-
pliers for constraining the trace, idempotency, and
Hermiticity of P, respectively. The idempotency of P
guarantees the noninteracting nature of the KS-DFT prob-
lem. For simplicity, we also assume that the computational
basis is orthogonal.
These three constraints are naturally imposed by the

definition of P,

P ¼ CoccC
†
occ; ð4Þ

where Cocc is the occupied molecular orbital (MO) coef-
ficient matrix. However, when minimizing Eq. (3) with
respect to P directly, it is necessary to consider these
constraints explicitly or impose them through density
matrix purification techniques [16]. We write P in terms
of its real and imaginary components,

P ¼ Xþ iY: ð5Þ

We can then rewrite these constraints as follows: the trace
condition leads to

trðXÞ ¼ N
2
; ð6Þ

trðYÞ ¼ 0; ð7Þ

the idempotency becomes

X ¼ X2 − Y2; ð8Þ

Y ¼ XY þ YX; ð9Þ

and the Hermiticity yields

X ¼ XT; ð10Þ

Y ¼ −YT: ð11Þ

Based on Eq. (11), we conclude thatY is antisymmetric and
therefore it automatically satisfies Eq. (7). This is an
important observation since ρðrÞ is computed from P
following

ρðrÞ ¼ 2
X
μν

ημðrÞηνðrÞPμν; ð12Þ

where ημðrÞ is a real-valued computational basis function.
Since ημðrÞηνðrÞ is a symmetric tensor, an antisymmetric
tensor Y does not contribute to ρðrÞ. In other words, it is
equivalent to write ρðrÞ ¼ 2

P
μν ημðrÞηνðrÞXμν.

The key insight here is that by having nonzero Y, the
idempotency constraint onX can be relaxed to Eqs. (8) and
(9). In other words, X does not have to satisfy X ¼ X2 as
long as Y is non-negligible. Such a density matrix P with
trðYTYÞ ≠ 0 is referred to as a “fundamentally complex”
density matrix. It is fundamentally complex in the sense
that no unitary rotation of a real-valued MO coefficient
matrix in the complex plane can represent a fundamentally
complex density matrix [13]. Consequently, the use of
fundamentally complex density matrices results in a
broader (than RKS) class of densities, arising from a
nonidempotent density matrix X. It is not obvious whether
lifting this idempotency constraint on X would always
yield a lower energy solution. In fact, the energy lowering
turns out to be quite rare and singlet open-shell systems
with high point group symmetry tend to exhibit this energy
lowering.
For semilocal functionals, EKS-DFT depends only on X

and reads

EKS-DFT½X� ¼ ET ½X� þ EV ½ρðrÞ� þ EJ½ρðrv�
þ EXC½ρðrÞ;∇ρðrÞ; � � �� þ Enn; ð13Þ

where the kinetic energy is defined as

ET ½X� ¼ 2trðXTÞ; ð14Þ

with the kinetic energy matrix T in the computational basis
(Tμν ¼ hμj − 1

2
∇2jνi), the nuclear-electron attraction

energy is

EV ½ρðrÞ� ¼ −
X
I

ZI

Z
r

ρðrÞ
kr −RIk2

; ð15Þ

with I denoting the nuclei (or ions), the electron-electron
repulsion energy reads

EJ½ρðrÞ� ¼
1

2

Z
r1

Z
r2

ρðr1Þρðr2Þ
kr1 − r2k2

: ð16Þ

EXC denotes the XC energy and Enn is the nuclear-nuclear
repulsion energy. We emphasize that as far as Eq. (13) is
concerned there is no symmetry breaking associated withX
and ρ. Furthermore, no auxiliary variable is needed for
energy evaluation.
Beyond permitting access to densities not describable by

RKS and even UKS, one other point should be mentioned.
Just as X is nonidempotent, the CRKS determinant is
inherently multiconfigurational (MC) as shown in
Ref. [13]. A complex orbital ξ is, in terms of real η and
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imaginary η̄ orbitals, parametrized by θ: ξ ¼ cosðθÞη−
i sinðθÞη̄. A two-electron closed-shell determinant made of
a complex spatial orbital ξi follows

jΨi ¼ A½ξξðαβÞ� ¼ A½ðΠþΩÞðαβÞ�; ð17Þ

where A is the antisymmetrizer including a normali-
zation factor, Π ¼ cos2ðθÞηη − sin2ðθÞη̄ η̄, and Ω ¼
−i sinðθÞ cosðθÞðηη̄þ η̄ηÞ. These two spatial wave func-
tions Π and Ω highlight the MC character of a CRKS
single-determinant jΨi. Π is a two-configuration wave
function (lower energy) and Ω is a open-shell wave
function (higher energy). The competition between
energy-lowering via Π and an energy penalty through Ω
determines whether an RKS electron pair complexifies to
CRKS. In the η basis, the corresponding 2 × 2 matrix X is

X ¼
�
cos2ðθÞ 0

0 sin2ðθÞ

�
: ð18Þ

θ ¼ 0 represents an RKS density matrix, whereas θ ¼ π=4
yields two half-occupied orbitals. Depending on θ, it is
possible to obtain a nonidempotent X. While the hidden
MC form in the CRKS determinant is limited, its real
1PDM (for ET) and its ρðrÞ (for EJ and EV) can all be
consistently evaluated using existing XC functionals. Thus
CRKS can be viewed as a limited case of MC-DFTwithout
the formal challenges [17–19] and practical double-count-
ing problems [4,17,20–24] normally associated with
that field.
Results.—We evaluate the numerical performance of

RKS, UKS, and CRKS on the recently developed TS12
benchmark set [14]. This dataset contains the experimental
singlet-triplet gaps of 12 atoms and molecules: C, NF, NH,
NO−, O2, O, PF, PH, S2, S, Si, and SO. The ground states of
these molecules are triplets. The lowest singlet states for
each system are singlet biradicals and exhibit a spin-
restricted Hartree-Fock (RHF) to complex RHF instability.
This instability is driven by the underlying point group
symmetry which gives rise to the degeneracy between the

highest occupied MO (HOMO) and the lowest unoccupied
MO (LUMO).
The correct lowest singlet states of these systems should

singly-occupy both HOMO and LUMO and thereby obtain
charge and spin densities that obey the underlying point
group symmetry. Even with the exact XC functional, RKS
orbitals are qualitatively wrong in these cases as they
doubly occupy the HOMO, breaking the point group
symmetry of the system and leading to a broken-symmetry
charge density. Since the exact XC functional yields not
only exact energy but also exact charge density, accessing a
different class of density matrix other than those from RKS
orbitals is necessary. A similar phenomenon was first
pointed out by Pople, Gill, and Handy in the context of
spin polarization in open-shell systems [25]. Indeed, UKS
can achieve these single occupations by breaking spin
symmetry. However, we will show that spin polarization is
not the way to access the right charge and spin densities in
the systems in TS12.
We investigate a local density approximation (LDA)

functional, SPW92 [26–29], two generalized gradient
approximation (GGA) functionals, BLYP [30,31] and
PBE [32], and four meta-GGA (MGGA) functionals,
TPSS [33], SCAN [34], MN15-L [35], and B97M-V
[36]. We used aug-cc-pVQZ basis set [37,38], and 99
and 590 points for radial and angular quadrature, respec-
tively, as implemented in Q-Chem [39]. We only report KS-
DFT solutions found to be locally stable based on stability
analysis [40,41]. The triplet ground states are computed
with UKS (MS ¼ 1) and we focus on the symmetry
dilemma of the singlet states.
In Table I, we present the root-mean-square-deviation

(RMSD) and mean-signed deviation (MSD) of the rela-
tively old XC functionals SPW92, BLYP, PBE, and TPSS.
Using RKS orbitals clearly overestimates the triplet-singlet
gap (i.e., positive MSDs) as restricted orbitals cannot
describe the open-shell nature of the lowest singlet state
of these systems. Using UKS orbitals has the opposite
problem. Namely, the gaps are all underestimated. This is
due to the undesired mixing of the singlet and triplet states

TABLE I. The deviation (kcal=mol) with respect to experimental values in ΔET-Sð¼ ES − ETÞ for 7 density
functionals obtained with restricted, unrestricted, and complex, restricted orbitals. Note that MN15-L and B97M-V
have no stable CRKS solutions for half of the data points (i.e., C, NF, NH, NO−, O2, and O).

SPW92 PBE BLYP TPSS SCAN MN15-L B97M-V

RKS
MSD 10.85 13.09 9.94 13.85 19.50 10.64 11.82
RMSD 11.46 13.53 10.34 14.42 19.82 11.16 12.22

UKS
MSD −13.70 −16.57 −17.61 −17.26 −16.24 −10.79 −13.69
RMSD 14.46 17.61 18.64 18.19 17.74 11.97 14.71

CRKS
MSD −1.23 3.00 0.90 7.94 15.55 10.50 10.34
RMSD 2.19 3.41 1.91 8.63 16.39 11.00 11.15
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(i.e., spin contamination). Since the triplet state is lower in
energy, the resulting UKS MS ¼ 0 state energy is too low.
Viewed differently, the UKS MS ¼ 0 state suffers from an
unphysical (nonzero) net spin density. The use of CRKS
orbitals improves both the MSD and RMSD by more than a
factor of 5 in the case of SPW92, PBE, and BLYP. The
improvement in TPSS is less impressive although it is still a
factor of 2 improvement.
This significant improvement is simply due to obtaining

ρ from a nonidempotent X without spin polarization.
Indeed, in all systems in TS12, the resulting X has exactly
two eigenvalues of 0.5 when obtained from these four XC
functionals. These two eigenvalues represent the single
occupancy of HOMO and LUMO, which is qualitatively
correct for these systems. To understand what drives the
energy lowering from RKS to CRKS, we decompose the
energy difference between RKS and CRKS into individual
energy contributions. We present this energy decomposi-
tion for O2 in Table II. The qualitative behavior discussed
here holds for other systems as well. All four XC func-
tionals show an increase in the kinetic energy as well as the
XC energy. The increase in the XC energy is driven by the
increase in the exchange energy. The correlation energy
shows only a small change. The RKS to CRKS instability is
driven by the classical Coulomb energy. In particular, a
significant energy lowering in the electron-nuclear attrac-
tion energy is the driving force of this instability in all
systems in the TS12 set. Such an increase in kinetic energy
accompanied by a decrease in electron-nuclear attraction
reflects the virial theorem, which must hold for variational
approaches such as KS-DFT.
The results for the more modern MGGA functionals

SCAN, MN15-L, and B97M-V, are also presented in
Table I. The RKS and UKS results are qualitatively similar
to what was observed in the above four functionals.
Namely, the overestimation in gaps was observed with
RKS while the underestimation in gaps was observed with
UKS. SCAN with RKS orbitals shows a particularly poor
behavior compared to all the other functionals examined in
this work. SCAN becomes comparable to other functionals
when used with UKS orbitals. The CRKS results with these
three modern functionals are rather surprising due to a
qualitatively different behavior from that of the four

functionals discussed before. The use of CRKS orbitals
for these functionals does not improve the quantitative
energetics. Furthermore, MN15-L and B97M-V exhibit no
stable CRKS solutions for C, NF, NH, NO−, O2, and O.
Additionally, MN15-L shows occupation numbers of (0.61,
0.39) and (0.78, 0.22) for PF and PH, respectively. The
poor performance of these modern MGGA functionals with
CRKS orbitals suggests that data such as the TS12 set may
be useful for XC functional development.
Lastly, we present density plots to compare the quali-

tative differences between densities from RKS and CRKS
orbitals. As mentioned throughout this Letter, RKS orbitals
break the point group spatial symmetry of systems in the
TS12 set whereas CRKS orbitals preserve the symmetry
[42]. The symmetry breaking at the orbital level results in
the symmetry breaking in ρ. We shall illustrate this point by
looking at ρ represented on a real-space grid.
In Fig. 1, we present the real-space density of O2

computed with BLYP. The discussion also applies to other
systems in the TS12 set and real-space densities are
qualitatively similar across different XC functionals. O2

is cylindrically symmetric around its interatomic axis.
Therefore, qualitatively correct density should exhibit this

TABLE II. The energy differences (kcal=mol) between CRKS
and RKS solutions of O2 (i.e., ΔE ¼ ΔECRKS − ΔERKS) for each
component in Eq. (13). ΔECoul ¼ ΔEJ þ ΔEV , ΔEX , and ΔEC
are the energy differences in classical Coulomb energy, exchange
energy, and correlation energy, respectively.

ΔET ΔEV ΔEJ ΔECoul ΔEX ΔEC ΔEXC

SPW92 12.89 −45.70 11.65 −34.05 7.88 0.20 8.09
PBE 10.69 −39.57 7.06 −32.51 12.13 −1.38 10.76
BLYP 9.96 −36.43 4.09 −32.33 13.05 −0.38 12.67
TPSS 5.95 −26.95 −2.28 −29.22 18.45 −1.65 16.80

FIG. 1. Density [ρðrÞ] represented on a real-space grid for O2

computed with the BLYP XC functional. O2 is aligned along the
bond axis (z axis) so that we can inspect the cylindrical symmetry
of density. (a) CRKS density (blue), (b) RKS (red) density
superimposed on CRKS density (blue), (c) UKS (green) two
times α-spin density [2ραðrÞ] superimposed on CRKS density
(blue), and (d) UKS (green) charge-density superimposed on
CRKS density (blue). The factor of 2 in (c) is to account for the
difference between normalization factors of charge and spin
densities. Every plot is based on an isosurface value of 0.08 au.
The z axis is pointing out of the page.
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symmetry. This is found to be true with the CRKS density
in Fig. 1(a). However, in Fig. 1(b), the RKS density is
elongated along the y axis and overall not cylindrically
symmetric. This is due to the spatial symmetry breaking
caused by doubly occupying the HOMO which mixes two
low-lying singlet states, 1Δg and 1Σþ

g [13]. The UKS α-spin
density breaks cylindrical symmetry to a smaller extent
than does RKS and is elongated along the x axis. The UKS
charge density (i.e., the sum of α and β density) is only x-y
symmetric and breaks the cylindrical symmetry. The x-y
symmetry is because the UKS β-spin density is rotated 90°
from the α density (i.e., elongated along the y axis).
The qualitatively improved UKS charge density (com-

pared to the RKS one) is attractive though it is still
qualitatively wrong. The on-top pair density interpretation
provides a way to understand the spin-symmetry breaking
in this case, but there is no quantitative benefit. The
resulting energetics from the UKS spin densities are far
from chemical accuracy (1 kcal/mol) as it is clear in Tables I
and II. In particular, the improved UKS charge density
(compared to RKS) comes at the expense of significant net
spin density, which is physically incorrect. In contrast to
this, we observe a qualitatively correct charge density (and
also zero net spin density) with the CRKS determinant. At
the same time, the resulting CRKS triplet-singlet gaps are
improved as shown in Table I.
Conclusions.—In this Letter, we showed that it is

possible to access a different class of densities that is
not possible to obtain within either RKS or UKS. This is
achieved by using CRKS to obtain the density. Although
the CRKS determinant breaks time-reversal symmetry and
complex symmetry, the resulting densities do not exhibit
the spatial and spin symmetry breaking associated with
RKS and UKS. Furthermore, based on the triplet-singlet
test set (TS12), we showed that the CRKS charge densities
follow the point group symmetry while RKS does not. This
allows CRKS to improve the quantitative accuracy of some
XC functionals by a factor of 5. We also showed that the
UKS charge density is qualitatively incorrect and the
resulting energies are far from chemical accuracy due to
spin contamination. Lastly, we note that modern MGGA
functionals (SCAN, MN15-L, and B97M-V) do not show
any significant improvements even when correct densities
from CRKS are used. Even with the exact XC functional,
one needs a CRKS determinant to obtain qualitatively
correct charge and spin densities for the systems considered
here. This Letter suggests that these modern functionals
might lack some aspects of the exact XC functional. We
hope that our study provides a new class of data that can be
used to assess, and possibly inform the design of new
approximate XC functionals. The key benefit is a route to
escape the symmetry dilemma whenever complex polari-
zation is relevant.

The Supplemental Material for this work is available
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Note added in the proof.—The discussions presented above
are for the finite basis simulation of Kohn-Sham equations.
Recently, we became aware of the Harriman construction
[45] which asserts the existence of a real, spin-restricted
determinant for any density at the continuum limit.
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