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One of the few exact results for the description of the time evolution of an inhomogeneous, interacting
many-particle system is given by the harmonic potential theorem (HPT). The relevance of this theorem is
that it sets a tight constraint on time-dependent many-body approximations. In this contribution, we show
that the original formulation of the HPT is valid also for the case of spin-, velocity-, and density-dependent
interactions. This result is completely general and relevant, among the rest, for nuclear structure theory both
in the case of ab initio and of more phenomenological approaches. As an example, we report on a
numerical implementation by testing the small-amplitude limit of the time-dependent Hartree-Fock—also
known as the random phase approximation—for the translational frequencies of a neutron system trapped
in a harmonic potential.
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The harmonic potential theorem (HPT)—an extension of
Kohn’s theorem [1,2] and further generalizations [3,4]—is
one of the few exact results for the description of the time
evolution of an inhomogeneous, interacting many-particle
system. Specifically, it describes the motion of such a
system, when confined in a parabolic potential well, under
the action of a spatially uniform time-dependent external
field. The system displays a harmonic motion of all
particles oscillating as a whole. Its frequency coincides
with the trapping harmonic oscillator frequency, regardless
of the interparticle interaction. This result is based on the
invariance of the harmonic potential under a transformation
to a homogeneously accelerated reference frame [5]: the
center of mass is completely decoupled from the internal
degrees of freedom.
It must be stressed that this sets an interesting constraint

on approximate time-dependent many-body theories [6]. In
particular, the time-dependent local density approximation
(TDLDA) of the time-dependent density functional theory
satisfies the HPT [1]. This is essentially because the
exchange-correlation potential is local in time and space.
The Gross and Kohn approximation [7] violates the HPT
instead, but it has been shown that by introducing some
modifications on the exchange-correlation potential it can
satisfy this theorem [8].
In its original formulation, the HPT assumes a two-body

force that depends only on the relative coordinates of the
interacting particles. However, in different physical systems,
the spin, velocity, or density dependence of the interaction
can be crucial for a realistic description of the observed
phenomenology. For example, the nucleon-nucleon inter-
action is strongly spin dependent, and produces a bound
state for the neutron-proton system (the deuteron) with

aligned spins (S ¼ 1), while all two-nucleon S ¼ 0 con-
figurations are known to be unbound. Spin-dependent
interactions are also important to describe magnetic phe-
nomena [9,10].
If we deal with systems characterized by short-range

interactions (see, for example, Refs. [11,12] among others),
the associated nonlocal equations (e.g., the Hartree-Fock
equations) may become quite complicated. If the inter-
action can be turned into a contact one, these nonlocal
equations can become local, and this represents a practical,
and often quite accurate, alternative. With this aim, the so-
called density matrix expansion was developed in
Refs. [13,14]. Such a method is based on the expansion
of the nonlocal one-body density ρðr; r0Þ of the system
under study, around ðrþ r0Þ=2, up to the needed order in
powers of r − r0. This brings in derivatives acting on the
wave functions evaluated in ðrþ r0Þ=2; in other terms,
when looking at the direct and exchange matrix elements of
the original interaction, one can realize that these have been
mapped onto those of a contact, velocity-dependent inter-
action (see, e.g., Sec. I. D of Ref. [15]).
Finally, three-body interactions have been shown to be of

paramount importance in different fields of physics [16–
18]. In the ab initio approaches to nuclear structure, three-
body forces and possibly induced four-body or higher-body
forces do show up [19]. Three-body interactions are very
complicated to deal with: they require an extension of
the usual quantum many-body techniques. One possibility
to address this issue, followed within current nuclear
density functional approaches, is to modelize a three-body
interaction by adopting an effective two-body density-
dependent interaction [20]. In this way, the three-body
force can be seen as having been averaged on the density of
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one of the particles. Therefore, in the light of this
discussion, one may deem necessary to generalize the
HPT, in order to set exact constraints on time-dependent
many-body theories based on spin-dependent, velocity-
dependent and three-body or higher-body forces (or
density-dependent two-body forces).
The HPTwas established by Dobson in Ref. [1]. It starts

from a general N-particle Hamiltonian under the action of
an external time-dependent and homogeneous field of the
type −FðtÞ,

HðfrigÞ ¼ H0 − FðtÞ ·
XN
j¼1

rj; ð1Þ

where frig ¼ r1;…; rN and H0 corresponds to the unper-
turbed Hamiltonian for the N interacting particles that are
trapped in a harmonic potential, that is,

H0¼
XN
i¼1

�
−
ℏ2∇i

2

2m
þ1

2
ri ·K · ri

�
þ1

2

XN
j≠k¼1

Vðfjrj− rkjgÞ;

ð2Þ

where K is the spring-constant matrix of the harmonic trap.
It is important to mention that a suitable choice of K may
allow one to modelize very different physical systems
such as non-neutral quantum wires or dots [21,22],
Hooke’s atoms [23,24], Hooke’s species [25], or spherical
nuclei [18], among others. In the original formulation
Vðfjrj − rkjgÞwas an arbitrary two-particle potential which
depends on the relative coordinates of particles j and k.
In the present contribution, we generalize Eq. (1) and

consider an arbitrary velocity- and density-dependent
interaction that preserves, as it should, Galilean invariance.
In addition, we trivially generalize Vðfjrj − rkjgÞ to depend
on spin σ and isospin τ as well,

V¼VCðfjrj− rkjgÞþVSðfjrj− rkjgÞσj ·σk
þVTðfjrj− rkjgÞτj · τkþVSTðfjrj− rkjgÞσj ·σkτj · τk:

ð3Þ

To study the time evolution of such a system, given the
specific type of external perturbation in Eq. (1), the HPT
considers a position-independent and time-dependent shift
xðtÞ of the wave function Ψ0 that is a solution of the
unperturbed Hamiltionian. In mathematical form, the time-
evolved wave function can be written as follows:

ΨHPTðfrig; tÞ ¼ e−{
E0
ℏ t−{NSðtÞþ{Nℏm

dx
dt·RΨ0ðfr̄igÞ; ð4Þ

where r̄j ≡ rj − xðtÞ, R≡ ð1=NÞPN
j¼1 rj, and the phase

SðtÞ is defined as

SðtÞ ¼ 1

ℏ

Z
t

0

�
1

2
m_xðt0Þ2 − 1

2
xðt0Þ · K · xðt0Þ

�
dt0: ð5Þ

We note that Ψ0 is stationary when referred to the
accelerated frame r̄ and that the phase shift SðtÞ brings
it back to the rest frame r [1]. E0 is the corresponding
eigenenergy.
The original HPT proofs that ΨHPTðfrig; tÞ, as written in

Eq. (4), is a solution of the time-dependent many-body
Schrödinger equation

Hðfrig; tÞΨHPTðfrig; tÞ ¼ iℏ
∂
∂tΨHPTðfrig; tÞ; ð6Þ

provided that xðtÞ follows the classical harmonic oscillator
equation (cf. Appendix B of Ref. [26]),

mẍ ¼ −K · xþ FðtÞ: ð7Þ

Later, it was shown that the HPT wave function can be
derived from first principles via the Feynman Path Integral
method [27,28] and the interaction representation of quan-
tum mechanics [29]. Following, for example, the proof via
the operator method (Appendix B. 1 of Ref. [26]), one
realizes that the interactions that depend on the spin and/or
isospin do not modify the proof of the HPT. Specifically, the
general interaction (3) proposed here does not modify the
value of the commutators shown in Eqs. (B16)–(B19) of
Ref. [26],

�
i
ℏ
Nm_x · R;H0

�
¼ −N _x · P; ð8Þ

�
i
ℏ
Nm_x · R;

�
i
ℏ
Nm_x · R;H0

��
¼ Nm_x2; ð9Þ

�
−
i
ℏ
Nx · P;H0

�
¼ −Nx · K · R; ð10Þ

�
−
i
ℏ
Nx · P;

�
−
i
ℏ
Nx · P;H0

��
¼ Nx · K · x; ð11Þ

which are at the center of the proof. Note that we have
defined P≡P

N
j pj=N, being pj the conjugate variables

with respect to rj.
The interaction V of any nonrelativistic system should

preserve Galilean invariance. For a velocity- or momentum-
dependent interaction, the simplest combination of the
momenta that preserves Galilean invariance is pi − pj.
Hence, it is immediate to show that commutators in
Eqs. (8) and (9) will not change, as

�
i
ℏ
Nm_x · R; pi − pj

�
¼ i

ℏ
m
XN
k¼1

½_x · rk; pi − pj� ¼ 0: ð12Þ
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More generally, it has been verified that, in the case of any
Galilean invariant interaction V,

½fðrÞ; V� ¼ 0; ð13Þ

for any local operator fðrÞ that is only function of the
spatial coordinates [cf. Eq. (6.4) of Ref. [30] ]. We note that
the latter expression is not only valid for zero-range
velocity-dependent forces, but also for finite-range forces
with exchange terms. Regarding commutators in Eqs. (10)
and (11), they are trivially unchanged. It must be stressed
that three- (or many-) body forces depending on the relative
coordinates of the involved particles would not modify the
proof of the HPT [i.e., commutators in Eqs. (8)–(11) remain
as they are].
Often, in nuclear physics, it has become customary to

take into account medium effects by adopting effective
two-body, density-dependent forces. As an example, within
a Hartree-Fock (HF) calculation for an even-even nucleus,
one can show that a zero-range three-body interaction of
the type

Vð3Þ ¼ gδðr1 − r2Þδðr2 − r3Þ ð14Þ

is equivalent to a two-body density-dependent force of the
form [31]

Vð3Þ ¼ g
1þ Pσ

6
δðr1 − r2Þρ

�
r1 þ r2

2

�
; ð15Þ

where Pσ is the exchange operator between particles 1 and
2 in the spin space. This equivalence is not valid, strictly
speaking, beyond HF [32]; density-dependent forces
should be taken as a mere phenomenological way to mimic
many-body effects. It has been shown, since a few decades,
that a fractional power (α < 1) of the density (ρα) is more
appropriate if one wishes to accurately describe at the same
time nuclear bulk properties and nuclear excitations (cf., for
instance, Refs. [33–35]). α < 1 is needed for a realistic
description of the nuclear incompressibility [36].
For density-dependent forces such as the one in Eq. (15),

one needs to evaluate the corresponding part of the
commutators in Eqs. (8)–(11) assuming that H0 explicitly
depends on the one-body density,

ρðr; tÞ≡ 1

N

Z
dr2…drNΨ†ðr; r2…rN; tÞΨðr; r2…rN; tÞ:

ð16Þ

Here,Ψ labels the general many-body wave function. In the
case of the HPTwave function (4), the density of the system
is invariant under the solid shift xðtÞ, that is, ρðr; tÞ ¼ ρðr̄Þ,
where ρðr̄Þ is the static one-body density solution ofH0ðr̄Þ.
Hence, ½H0ðr̄Þ; ρðr̄Þ� ¼ 0. Expanding the latter commutator
expression one finds

½H0ðr̄Þ; ρðr̄Þ� ¼ 0

¼
�XN
j¼1

p̄2j
2m

; ρðr̄Þ
�
þ 1

2

�XN
j¼1

r̄j · K · r̄j; ρðr̄Þ
�

þ 1

2

� XN
j≠k¼1

Vðfjr̄j − r̄kjgÞ; ρðr̄Þ
�

ð17Þ

¼
�XN
j¼1

ðpj−pxÞ2
2m

;ρðr̄Þ
�

¼
XN
j¼1

1

2m
ð½p2j ;ρðr̄Þ�þ ½p2x;ρðr̄Þ�−2½px ·pj;ρðr̄Þ�Þ; ð18Þ

where px ¼ iℏ∂=∂x. The second commutator at the right-
hand side of Eq. (17) is trivially zero, and the third one is also
zero due to Eq. (13). The three commutators at the right-
hand side of Eq. (18) can be evaluated as follows. We define
a unitary transformation so that T Ψ0ðfrgÞ ¼ Ψ0ðfr̄gÞ,
namely, T ¼ exp ½−iNxðtÞ · P�. Therefore, the first com-
mutator is

½p2j ; ρðr̄Þ� ¼ ½p2j ;Ψ†
0ðfrgÞT †T Ψ0ðfrgÞ� ¼ ½p2j ; ρðrÞ� ¼ 0;

ð19Þ

since ½H0ðrÞ; ρðrÞ� ¼ 0 [we have simplified the notation, by
omitting the prefactor and the integral of Eq. (16)]. The
second one is

½p2x; ρðr̄Þ� ¼ ½p2x;Ψ†
0ðfrgÞT †T Ψ0ðfrgÞ� ¼ ½p2x; ρðrÞ� ¼ 0;

ð20Þ
since px commutes with r. The last commutator should be
zero because of Eq. (18):

½px · pj; ρðr̄Þ� ¼ ½px · pj;Ψ†
0ðfrgÞT †T Ψ0ðfrgÞ�

¼ ½px · pj; ρðrÞ� ¼ 0: ð21Þ

This implies that the commutator of pj projected along the
direction of xðtÞ commuteswith ρðrÞ, ensuring that Eqs. (10)
and (11) remainvalid in the case of density-dependent forces
as well. For the case of density-dependent forces the
commutators in Eqs. (8) and (9) are trivially unchanged.
Given all previous discussions, it is now evident that the

small-amplitude limit of the time-dependent Hartree-Fock
theory, commonly known as random phase approximation
(RPA), preserves the HPTalso in the case of spin-, velocity-,
and density-dependent forces. In what follows, we will
numerically show that a system of neutrons in an isotropic
harmonic trap (with Kii ¼ mω2 and Kij ¼ 0), solved within
the RPA with an effective zero-range interaction which is
spin-, velocity-, and density-dependent, satisfies the HPT.
This system is dubbed neutron drop and it is a useful
benchmark for testing nuclear models [37–40]. RPA is a
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very successful approach for different types of fermionic
systems; in nuclear physics it is the tool of choice for
studying the collective motion, also in connection with the
extraction of the parameters governing the nuclear equation
of state, or with applications to processes of interest for
particle physics and astrophysics [18,33,35].
As our code is in spherical symmetry, we should seek

among the RPA solutions with angular momentum and
parity Jπ ¼ 1−. The translational modes are known [18] to
be excited by the so-called isoscalar dipole operator,
O ¼ P

N
i¼1 riY10ðr̂iÞ. The mode we are after should be

essentially the only one excited by this operator, and its
frequency should be equal to the trap frequency ω accord-
ing to the HPT. To better characterize its translational
nature, we can look at its transition density. Transition
densities are defined, for any given RPA state n, by [18,41]

δρðr; tÞ¼ 1

N

Z
dr2…drNΨ

†
nðr;r2…rN;tÞΨ0ðr;r2…rNÞ:

ð22Þ

If the motion is associated with an infinitesimal displace-
ment equal to A, the transition density reads [1]

δρðrÞ ¼ −A · ∇ρ0ðrÞ: ð23Þ
Here, ρ0 is the ground state density and the displacement A
must be related to the harmonic motion in the trap xðtÞ. If
xðtÞ¼AcosðωtþϕÞ, then A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=Nmc2ℏωÞ

p
ℏc because

the energy ℏω should be equal to the classical energy.
For our calculations we have used the RPA code

published in Ref. [41], adapted to treat a system in a
harmonic trap. This code has been implemented with a two-
body interaction of the Skyrme type which is zero-range,
spin, velocity, and density dependent in its standard form
[15]. For the numerical implementation, we have picked up
the SAMi parametrization of the Skyrme model [42].
In Table I, we show some results for different neutron

drops ranging from 2 to 50 neutrons trapped in a harmonic
oscillator potential having ℏωtrap ¼ 10 MeV. In the second
column, the total energy with respect to the Thomas-Fermi
solution for a noninteracting N-fermion system [18],

ETF ¼
34=3

4
ℏωtrapN4=3; ð24Þ

is given. In the third column, the predictions for the root
mean square neutron radius are shown. The results for the
total binding energy and radius are consistent with previous
calculations available in the literature [37–40], and are the
only ones shown here that depend on the interaction. They
are provided for the sake of completeness. In the fourth
column, the frequency of the translational mode as found in
the RPA calculations is given with respect to the trap
frequency. Finally, in the last column, the fraction of the
model independent energy-weighted sum rule (EWSR)

exhausted by the mode is shown [18]. The EWSR can
be analytically calculated from the double-commutator
(D.C.) as

mD:C:
1 ¼1

2
hΨHF

0 j½O; ½H0;O��jΨHF
0 i

¼−
1

2

�
ΨHF

0

����
�
O;

�
ℏ2∇2

2m
;O

������ΨHF
0

	
¼ 9ℏ2

8πm
N; ð25Þ

in a model independent fashion. In fact, due to Eq. (13), the
kinetic energy is the only term contributing to mD:C:

1 . It is
clear from the table that the sharp RPA mode coincides,
within ‰ accuracy, with the trap frequency and that such
mode is the only one appreciably excited in the RPA: it
exhausts essentially all themD:C:

1 . This is a powerful test for
the extended HPT that has been discussed in this work.
In Fig. 1, we compare the RPA transition densities δρRPA

with the expected result from the HPT given in Eq. (23):
this becomes, in spherical symmetry,

TABLE I. Total binding energy with respect to the Thomas-
Fermi solution of Eq. (24), root mean square radius, excitation
energy of the translational mode with respect to the trap
frequency, and fraction of the model-independent energy-
weighted sum rule exhausted by the mode (see text), for different
neutron drops ranging from 2 to 50 neutrons, trapped in a
harmonic oscillator of ℏωtrap ¼ 10 MeV.

N E=ETF hr2i1=2 [fm] ωRPA=ωtrap m1=mD:C:
1 [%]

2 0.844 2.22 1.000 99.99
8 0.723 2.63 1.002 99.98
16 0.714 2.95 1.003 99.98
20 0.685 3.07 1.004 99.95
40 0.677 3.51 1.005 99.61
50 0.685 3.65 1.007 99.89

0

0.02

0.04

0.06

δρ
 [

fm
−3

]

RPA
HPT

0

0.02

0.04

0.06

0 2 4 6 8
r [fm]

-0.01

0

0.01

0.02

0.03

0 2 4 6 8
r [fm]

0 2 4 6 8
r [fm]

-0.01

0

0.01

0.02

0.03
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N=16
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FIG. 1. Transition densities obtained from the RPA calculation
(full line) and from the HPT in the form of Eq. (26) (dashed line),
in the case of different neutron drops trapped in a harmonic
potential with ℏω ¼ 10 MeV.
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δρHPTðrÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Nmc2ℏω

r
ℏc

dρ0
dr

: ð26Þ

The results show a very good numerical agreement
between the calculation and the expectations from the
HPT. The root mean square deviation between the two
results shown in Fig. 1 is around, or smaller than, 6 ×
10−4 fm−3 which corresponds to a numerical error at the
1% level or below. This confirms that the RPA approach
based on a spin-, velocity-, and density-dependent
Hamiltonian satisfies the extended HPT theorem that
we have demonstrated here.
In summary, we have extended the HPT to spin-,

velocity-, and density-dependent interactions. This gen-
eralization is of fundamental relevance. We had chiefly
in mind the case of the atomic nucleus, and we have
used a system of neutrons to demonstrate that the
generalized HPT can be fulfilled numerically with high
accuracy. This was done in the case of a specific
Hamiltonian. Nevertheless, in keeping with the steady
progress of ab initio approaches to nuclear structure
[43,44] one can be confident that the generalized HPT
may be relevant for this domain (cf. also Ref. [45] and
references therein). In addition, there exist other types of
physical systems that are governed by spin-, velocity-,
or density-dependent interactions. If they are composed
by many fermions, such systems are difficult to be fully
understood from a microscopic point of view. Hence,
this extension of the theorem enables us to test approxi-
mate time-dependent many-body theories dealing with
the description of the time evolution of an inhomo-
geneous, interacting many-particle system, by setting a
firm constraint.
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