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We establish that entropy production, which is crucial to the characterization of thermodynamic
irreversibility, is obtained through a variational principle involving the Kulback-Leibler divergence.
A simple application of this representation leads to an information-theoretical bound on entropy production
in thermal relaxation processes; this is a stronger inequality than the conventional second law of
thermodynamics. This bound is also interpreted as a constraint on the possible path of a thermal relaxation
process in terms of information geometry. Our results reveal a hidden universal law inherent to general
thermal relaxation processes.
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Introduction.—During the last two decades, significant
achievements have been made in nonequilibrium statistical
mechanics such as finding universal symmetry in fluctuating
entropy production, which is manifested as the fluctuation
theorem [1–4] and the Jarzynski equality [5]. This triggers
various equalities [6–13], and the validity has been con-
firmed by elaborated experiments [14–16]. The fluctuation
theorem remarkably reproduces the second law, i.e., the
nonnegativity of the entropy production, and the fluctuation
dissipation theorem and further universal information on
higher order fluctuations [17–19], which are all universal
relations, regardless of the specific class of processes.
On the other hand, given a restricted class of irreversible

processes, one can obtainmore detailed properties of thermo-
dynamic irreversibility that are stronger than the conventional
second law. The examples include the recent thermodynamic
uncertainty relation developed in the class of the steady state
systemswith a finite current such as heat and charge currents.
In this class, a significant constraint between the current
fluctuation and the average current has been elucidated
[20–24]. Another example is the class of cyclic heat engines
controlled with a finite speed, where the trade-off relation
between thermodynamic efficiency and finite power is
derived [25–27]. Such strong relations have helped us to
deepen our understanding of the thermodynamic irreversibil-
ity inherent to each class of the nonequilibrium process.
In this Letter, we further continue towards this direction

by considering the class of thermal relaxation processes,
which has not been sufficiently explored so far. We present
several characteristics of thermodynamic irreversibility
inherent to this class. Thermal relaxation phenomena are
ubiquitous in nature and are one of the most critical targets
in nonequilibrium physics. In addition, they are diverse and
can be highly nontrivial even within Markovian dynamics.

Metastable potentials are well known to induce various
phenomena such as the Griffith phase in magnetic alloys
[28], nonmonotonic relaxations [29], and slow relaxations
in glassy systems [30]. Provided that a strong constraint on
irreversibility exists in relaxation processes, this constraint
can be salient information on many nontrivial phenomena
because such a constraint inevitably leads to a general
limitation on the possible relaxation path.
Our strategy in this regard is to use the information-

theoretical argument. Here, special attention is paid to two
important quantities in the relaxation processes: one is
thermodynamic entropy production and the other is the
Kullback-Leibler divergence (relative entropy) in informa-
tion theory, which quantifies how far a given two proba-
bility distributions are. We first consider the entropy
production for a general class of stochastic dynamics,
which can contain time-dependent parameters. Then we
develop a variational principle for entropy production using
the Kullback-Leibler divergence with two distributions that
respectively evolve forward and backward in time [shown
in (2)]. This principle is convenient to consider the
thermodynamic irreversibility in thermal relaxation proc-
esses where no time-dependent control parameters are
involved. Based on the variational principle, we obtain a
lower bound for entropy production in a relaxation process
with the Kullback-Leibler divergence between the initial
and the final distributions [shown in (3)]. Further, this
relation leads to a characterization of the possible time
evolution from the viewpoint of information geometry. We
also show that the variational principle is connected to the
fluctuation-theorem-type equality.
Setup and variational expression of entropy production

rate.—We start with the core part, namely, the variational-
principle expression for the entropy production rate.
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We follow the standard framework of stochastic thermo-
dynamics. Consider a system with discrete states attached
to a heat bath with inverse temperature β. This heat bath
induces stochastic transitions between different states. The
probability distribution of state i at time t, denoted by piðtÞ,
follows

d
dt

piðtÞ ¼
X
j

RijðtÞpjðtÞ; ð1Þ

where RijðtÞ is the transition matrix element from the state j
to i, which can be time dependent. Throughout this Letter,
we assume the detailed-balance condition RijðtÞe−βEjðtÞ ¼
RjiðtÞe−βEiðtÞ, where EiðtÞ is the instantaneous energy of
state i at time t and we set the Boltzmann constant to unity.
The detailed-balance condition embodies the microscopic
time reversibility in the equilibrium state. In the Supple-
mental Material, we also discuss the case without the
detailed-balance condition and we present a similar result
to the main result given below [31]. We remark that a dy-
namics with continuous variables can be properly analyzed
by using the discretized representation [26], and therefore,
one can safely continue the argument with the discrete
picture.
The total entropy production from t ¼ 0 to t ¼ τ is given

by the integration of the entropy production rate σ½0;τ� ¼R
τ
0 dt _σðtÞ, where the entropy production rate _σðtÞ at time t is
obtained as the sum of two contributions from the system
and the heat bath [32]:

_σðtÞ ≔ _σsysðtÞ þ _σbathðtÞ;

_σsysðtÞ ¼
d
dt

X
i

ð−pi lnpiÞ;

_σbathðtÞ ¼ −
X
i

βEiðtÞ _pi:

The system’s entropy σsys is defined by the Shannon
entropy. The entropy increase in the heat bath σbath is
given through the amount of heat flow into the bath as in
the conventional thermodynamics.
We here state the variational expression of the entropy

production rate, which is our first main result in this Letter:

_σðtÞ ¼ max
q

�
−
d
dt

D(pðtÞjjqð−tÞ)
�
; ð2Þ

where D is the Kullback-Leibler divergence [33] (relative
entropy) defined as Dðpjjp0Þ ≔ P

i pi lnðpi=p0
iÞ. The dis-

tribution qð−tÞ is the probability distribution that evolves
backward in time with the same dynamics, which is
introduced independently of the target distribution p.
In other words, the equation of motion is given by
−ðd=dtÞqið−tÞ ¼

P
j RijðtÞqjð−tÞ (see also Fig. 1). We

provide the proof at the end of this Letter, and here we focus
on physics given by this relation.

The entropy production rate is obtained as the maximiz-
ing problem of the right-hand side in (2) over all possible
probability distributions q. The maximum is achieved when
qð−tÞ is the equilibrium distribution with instantaneous
energies peq, i.e., _σ ¼ −ðd=dtÞD(pðtÞjjpeq). Otherwise, the
function defined in large parentheses is smaller than the
entropy production rate, i.e., _σ ≥ −ðd=dtÞD(pðtÞjjqð−tÞ)
for any q. The right-hand side in this inequality gives a lower
bound on the entropy production, and hence the positive
value is required to obtain thermodynamically nontrivial
relation. As we show below, the appropriate choice of q in a
specific class of dynamics makes the bound positive, which
leads to a stronger bound on the thermodynamic irrevers-
ibility. The most important application of the relation (2) in
the context of the thermodynamic irreversibility is its
application to the thermal relaxation processes as demon-
strated below. In the Supplemental Material [31], we also
present another application to time-dependent processes
with a systematic protocol which characterizes the thermo-
dynamic irreversibility.
Bound for relaxation processes.—We here show a simple

but important application of the variational principle to
thermal relaxation processes, that is, a dynamics with a
time-independent transition matrix. We now derive an infor-
mation-theoretical bound for the entropy production in this
process. We set qð0Þ ¼ pðτÞ in the relation (2) and integrate
both sides from initial time t ¼ 0 to τ=2 to obtain the
inequality σ½0;τ=2� ≥ D(pð0ÞjjpðτÞ). From the monotonic
increase of entropy production in time, one can immediately
obtain the inequality on entropy production:

σ½0;τ� ≥ D(pð0ÞjjpðτÞ): ð3Þ

The most crucial aspect of this relation is that it imposes a
stronger constraint on the entropyproduction than the standard

FIG. 1. We draw a state space of probability distributions.
Two thin curves represent trajectories of probability distributions
in dynamics with the transition matrix R. Green lines represent
the Kullback-Leibler divergence between two distributions. The
variational principle (2) claims that the difference between two
Kullback-Leibler divergencesD(pð0Þjjqð0Þ) −D(pðΔtÞjjqð−ΔtÞ)
(solid line minus dashed line) is maximized when qð0Þ ¼
qð−ΔtÞ ¼ peq.
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second law of thermodynamics, since the Kullback-Leibler
divergence is always nonnegative. This result is valid for
arbitrary dynamics as long as the transition matrix is time
independent. This strong constraint on the entropy production
shown in (3) is our second main result in this Letter.
At the initial time, the Kullback-Leibler divergence on

the right-hand side is zero, and therefore, the positivity of
the entropy production rate guarantees the above inequality
in the early time stage [34]. However, we stress that this
inequality holds for the whole time region. Equality is
achieved at both τ ¼ 0 and τ → ∞. In the latter case, the
distribution is the equilibrium distribution.
We present an example with a three-state model to show

how the inequalityworks for thewhole time region.We set the
energies of the three states as ðβE1; βE2; βE3Þ ¼ ð6; 30; 24Þ.
See the inset of Fig. 2(a) for the energy structure. The
transition rate is given in the form Rij ¼ γijeβðEi−EjÞ=2=
f2 cosh½βðEi − EjÞ�g with the parameters ðγ12; γ23; γ31Þ ¼
ð10; 0.1; 0Þ and γij ¼ γji. For these parameters, the transi-
tion rates are R32 ∼ 4.9 × 10−3, R12 ∼ 6.1 × 10−5, R23∼
1.2 × 10−5, R21 ∼ 2.1 × 10−15, and R13 ¼ R31 ¼ 0. The
initial distribution is set as ðp1; p2; p3Þ ¼ ð0.1; 0.8; 0.1Þ.
These transition rates indicate that the dynamics is dominated

by the relaxation from the state 2 to 3 at the initial stage, and
after this process the complete equilibration is achieved with
the extremely long time. The plot in Fig. 2 shows non-
monotonic thermal relaxation and an exponentially long
equilibration time, which support the scenario described
here. Most importantly, the figure clearly shows that the
inequality (3) robustly holds at all times. Intriguingly, a
significant decrease in the difference between the entropy
production and the Kullback-Leibler divergence is observed
at the intermediate time [35]. Such a reduction can be seen
generically for systems with local equilibration [31].
We remark that the relation (3) applies not only to

discrete systems but also to spatially continuous systems. In
the Supplemental Material, we demonstrate an example
where a Brownian particle trapped by a harmonic potential
in one dimension [31]. The validity of (3) is analytically
confirmed in this model.
Several interpretations: the information geometry and

the speed limit.—Let us combine the standard expression of
entropy production σ½0;τ� ¼ D(pð0Þjjpeq) −D(pðτÞjjpeq)
and the relation (3). Then we obtain a nontrivial constraint
on the thermal relaxation process in terms of the informa-
tion geometry:

D(pð0Þjjpeq) ≥ D(pð0ÞjjpðτÞ)þD(pðτÞjjpeq): ð4Þ

In the field of information geometry [36], the equality
satisfied between three Kullback-Leibler divergences is
called the Pythagorean theorem by regarding each con-
tribution of the Kullback-Leibler divergence as a squared
value of the distance forming a right-angled triangle. In this
context, the inequality (4) implies that the probability
distribution at an arbitrary time should be located at the
point forming the obtuse angle. Thus the relaxation path
must be confined inside the circle with a diameter deter-
mined by pð0Þ and peq, as shown schematically in Fig. 3.
The right angle is achieved at τ ¼ 0 and τ ¼ ∞ where the
system relaxes to the thermal equilibrium. It is remarkable
that the universal constraint exists in the information-
geometrical context regardless of each detail of the
phenomenon.
We also mention that the relation (3) can be interpreted in

terms of the speed limit in the stochastic thermodynamics
[37]. We can rewrite this relation as τ ≥ D(pð0ÞjjpðτÞ)=σ̄,
where σ̄ is the average entropy production rate σ̄ ≔ σ½0;τ�=τ.
This inequality is interpreted as a bound of the relaxation
time. At the qualitative level, this expression implies that
for a given distance between a target (final) distribution and
an initial distribution, a large entropy production rate is
necessary for a short relaxation time. In Ref. [37], the speed
limit expression in the stochastic processes is discussed in a
general class of Markovian dynamics, and it is shown that
the dynamical activity as well as the average entropy
production rate is crucial to describe the bound of manipu-
lation time. However the present case contains only the

(a)

(b)

FIG. 2. Demonstration of the relation (3) in a three-state toy
model. The dynamics shows a long-time trap dominated by the
states 2 and 3. (a) We plot σ½0;τ� (orange solid line) and
D(pð0ÞjjpðτÞ) (black dashed line). Although the entropy pro-
duction shows anomalous two-step relaxation, D(pð0ÞjjpðτÞ)
robustly bounds the entropy production. (b) We plot the differ-
ence between these two.
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entropy production rate, which is one of characteristics
inherent to the class of thermal relaxation processes.
The fluctuation-theorem-type equality.—As is well

known, the second law can be obtained from the fluctuation
theorem. We consider whether the relation (2) can be
obtained through the fluctuation theorem. We remark that
the thermodynamic uncertainty relations are considered not
to be obtained from a fluctuation-theorem-like equality
[38,39]. Here, we show that in the present case, there exists
a fluctuation-theorem-type equality that leads to the
inequality (2), while the original fluctuation theorem is
not available.
Let us consider a process with time-independent tran-

sition rates. We integrate (2) for a finite time Δt to get

σ½0;Δt� ≥ D(pðΔtÞjjqð0Þ) −D(pð0ÞjjqðΔtÞ); ð5Þ

where both p and q evolve in time with the same transition
rates. We present the fluctuation-theorem-type equality that
reproduces this expression. Let Γi→j be a trajectory of the
states during the time interval Δt from the initial state i to
the final state j. Then, one can derive the following
equality:

�
exp

�
−σ̂ðΓi→jÞ − ln

pjðΔtÞ
qjð0Þ

þ ln
pið0Þ
qiðΔtÞ

��
¼ 1; ð6Þ

where h…i is the average over all possible paths and
the initial distribution, and σ̂ðΓi→jÞ is the stochastic
entropy production. Details on the derivation of this
equality and an extension to the case of time-dependent
transition matrix are presented in the Supplemental
Material [31]. One can readily check that (5) is obtained

through this equality using Jensen’s inequality and the
relation

P
i

R
dΓi→jpið0ÞPðΓi→jÞ ¼ pjðΔtÞ.

Proof of Eq. (2).—Here, we present a proof of (2). We
prove the following inequality that is equivalent to Eq. (2):

d
dt

½D(pðtÞjjqð−tÞ) −D(pðtÞjjpeq)� ≥ 0: ð7Þ

Note that the time-derivative does not act on the instanta-
neous equilibrium distribution peq. The left-hand side is
calculated as follows.

d
dt

½D(pðtÞjjqð−tÞ) −D(pðtÞjjpeq)�

¼ d
dt

�X
i

piðtÞ ln
�

peq
i

qið−tÞ
��

¼
X
i≠j

Rijpj ln

�
peq
i qj

peq
j qi

�
þ
X
i≠j

pi
Rijqj
qi

þ
X
i

Riipi: ð8Þ

From the second line, we dropped t dependence in the
variables for the sake of simplicity. Exchanging the
indices i and j and using the detailed-balance condition
Rijp

eq
j ¼ Rjip

eq
i , we obtain the desired result as

¼
X
i≠j

Rijpj ln

�
Rijqj
Rjiqi

�
þ
X
i≠j

Rijpj
Rjiqi
Rijqj

−
X
i≠j

Rijpj

¼
X
i≠j

Rijpj

�
Rjiqi
Rijqj

− 1 − ln

�
Rjiqi
Rijqj

��
≥ 0: ð9Þ

In the last line, we used x − 1 − ln x ≥ 0 for any x > 0.
Discussion.—In this Letter, we present the information-

theoretical argument in the thermal relaxation processes.
The variational principle is a core to develop this theory,
which demonstrates the deep connection between non-
equilibrium statistical physics and information theory. The
significance of the inequality (3) is that the amount of
entropy production is bounded from below by the infor-
mation-theoretical entropy determined only by the initial
and final distributions. This is the remarkable constraint
that is stronger than the conventional second law, which is
imposed on the class of thermal relaxation processes. We
remark that the variational principle (2) is applicable to
general processes, and hence we hope that it helps in
developing the other useful thermodynamic relations.
The inequality (3) can be interpreted as the information-

geometrical constraint (4). This provides a new approach to
characterize the thermal relaxation processes. Further
analysis with the information geometry techniques
[36,40–44] may help in finding richer properties of thermal
relaxation.

FIG. 3. Schematic of the constraint (4) in terms of the
information geometry. As a natural extension of the Pythagorean
theorem in the information geometry, the inequality is interpreted
as that the probability distribution at τ forms an obtuse angle and
its path is inside the green “circle.” We emphasize that these
relations are stronger than the conventional second law: σ½0;τ� ¼
D(pð0Þjjpeq) −D(pðτÞjjpeq) ≥ 0.
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