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The fluctuation theorem is the fundamental equality in nonequilibrium thermodynamics that is used to
derive many important thermodynamic relations, such as the second law of thermodynamics and the
Jarzynski equality. Recently, the thermodynamic uncertainty relation was discovered, which states that
the fluctuation of observables is lower bounded by the entropy production. In the present Letter, we
derive a thermodynamic uncertainty relation from the fluctuation theorem. We refer to the obtained
relation as the fluctuation theorem uncertainty relation, and it is valid for arbitrary dynamics, stochastic as
well as deterministic, and for arbitrary antisymmetric observables for which a fluctuation theorem holds.
We apply the fluctuation theorem uncertainty relation to an overdamped Langevin dynamics for an
antisymmetric observable. We demonstrate that the antisymmetric observable satisfies the fluctuation
theorem uncertainty relation but does not satisfy the relation reported for current-type observables in
continuous-time Markov chains. Moreover, we show that the fluctuation theorem uncertainty relation can
handle systems controlled by time-symmetric external protocols, in which the lower bound is given by
the work exerted on the systems.
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Introduction.—During the last two decades, stochastic
thermodynamics [1–3] accelerated the understanding of
nonequilibrium systems through the discovery of several
thermodynamic relations. Among them, the fluctuation
theorem (see [4–12] and reviews [13,14]) is the central
relation in nonequilibrium systems because this theorem
leads to important thermodynamic relations, such as the
second law of thermodynamics, the Green-Kubo relation
[15], and the Jarzynski equality [16], to name a few.
Recently, a remarkable relation between fluctuation and
the entropy production was found, which is known as the
thermodynamic uncertainty relation (TUR) [17–39]. The
TUR states that the fluctuation of observables, such as
the current, is lower bounded by the reciprocal of the
entropy production. The proof of the TUR has been carried
out using the large deviation principle [19–21,23–
25,29,30,32], the fluctuation-response inequality [33,34],
the Cramér-Rao inequality [35–38], and the linear response
around equilibrium [17,39]. Although, as stated above, the
fluctuation theorem can be used to derive many other
thermodynamic relations, the relations between the TUR
and the fluctuation theorem remain unclear. The univer-
sality of the fluctuation theorem leads us to posit that the
TUR can be derived through the fluctuation theorem.
In the present Letter, we answer this question by

obtaining the TUR for observables, which are antisym-
metric under time reversal, from the fluctuation theorem.
We refer to the obtained relation as the fluctuation theorem
uncertainty relation (FTUR). Considering a detailed fluc-
tuation theorem with respect to the entropy production and

the observable, we derive the FTUR [see Eq. (10)]. As long
as the fluctuation theorem holds, the FTUR is valid for
arbitrary systems regardless of underlying dynamics and
observables, and for arbitrary observation times. Notably,
the FTUR holds for deterministic dynamical ensembles,
which cannot be handled by the above-mentioned previous
approaches. This is in contrast to existing TURs, which
assume particular stochastic dynamics (mostly Markovian),
and their proofs were given for each dynamics. The
obtained results indicate that the TUR is a direct conse-
quence of the fluctuation symmetry of the total entropy
production. We apply the FTUR to the signum function of
the current in an overdamped Langevin dynamics. We show
that the signum function of the current does not satisfy the
previously reported TUR [cf. Eq. (11)], which holds for a
current-type observable in continuous-time Markov chains.
Furthermore, the FTUR holds for systems controlled by
time-symmetric external protocols. In particular, when the
systems are initially in equilibrium, the FTUR holds, with
the total entropy production replaced by the work exerted
on the systems. As an example of the FTUR with external
protocols, we consider an overdamped dragged Brownian
particle.
Model.—We consider a system that is continuous in

space and time and assume that its time evolution is
governed by a Markov process. Although our description
is based on continuous time and continuous space, gener-
alizations to discrete time or discrete space are straightfor-
ward. We set the Boltzmann constant to unity. Let xðtÞ be
the position of the system at time t [xðtÞ can be
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multidimensional], Γ a trajectory from t ¼ 0 to t ¼ T
(T > 0), Γ≡ ½xðtÞ�t¼T

t¼0 , and Γ† its reversed trajectory, i.e.,
Γ† ≡ ½xðT − tÞ�t¼T

t¼0 . The system (i.e., the transition rate) can
depend on an external protocol λðtÞ. In the ensemble level,
the state of the system is depicted by Pðx; tÞ, which is the
probability density that the system is in x at time t. As is
often considered in stochastic thermodynamics, we con-
sider forward and reverse processes. We define PðΓjxð0ÞÞ,
the probability of observing a trajectory Γ in the forward
process starting from xð0Þ at t ¼ 0, and P†(Γ†jxðTÞ), the
probability of observing a trajectory Γ† in the reverse
process starting from xðTÞ at t ¼ T. According to the local
detailed balance assumption, the total entropy production
σðΓÞ satisfies [40] σðΓÞ¼ln½PðΓÞ=P†ðΓ†Þ�, where PðΓÞ≡
P(xð0Þ;0)P(Γjxð0Þ) and P†ðΓ†Þ≡P(xðTÞ;T)P†(Γ†jxðTÞ).
Throughout the present Letter, we consider cases in which
σ satisfies the (strong) detailed fluctuation theorem
PðσÞ=Pð−σÞ ¼ eσ. This condition is met when the system
satisfies the following two conditions: (i) the initial and
final probability distributions agree, Pðx; 0Þ ¼ Pðx; TÞ; and
(ii) the external protocol is time symmetric, λðtÞ ¼ λðT − tÞ
[14]. These conditions are typically satisfied by systems in
a steady state or in a periodic steady state with the periodic
protocol satisfying λðtÞ ¼ λðT − tÞ. When (i) and (ii) are
satisfied, PðΓÞ ¼ P†ðΓÞ. Moreover, satisfying (i) and
(ii) implies that σðΓÞ is antisymmetric under time reversal:

σðΓ†Þ ¼ −σðΓÞ: ð1Þ

Let ϕðΓÞ be an observable that is a function of Γ. Similar
to the total entropy production, we assume that ϕðΓÞ is
antisymmetric under time reversal, i.e.,

ϕðΓ†Þ ¼ −ϕðΓÞ: ð2Þ

As long as Eq. (2) holds, ϕðΓÞ can be an arbitrary function
of Γ. The condition of Eq. (2) is typically satisfied by the
current, but there exist many other quantities that can
satisfy the condition.
Let Pðσ;ϕÞ be the probability that we observe the total

entropy production σ and the observable ϕ in the forward
process. From Eqs. (1) and (2), we can show that σ
and ϕ obey the following strong detailed fluctuation
theorem [41]:

Pðσ;ϕÞ ¼
Z

DΓδ(σ − σðΓÞ)δ(ϕ − ϕðΓÞ)PðΓÞ

¼ eσ
Z

DΓ†δ(σ þ σðΓ†Þ)δ(ϕþ ϕðΓ†Þ)PðΓ†Þ

¼ eσPð−σ;−ϕÞ; ð3Þ

where
R
DΓ is the path integral.

We now derive the FTUR solely from Eq. (3).
Reference [42] examined the statistical properties of

entropy production from the fluctuation theorem.
Inspired by Ref. [42], we introduce a probability density
function Qðσ;ϕÞ as follows:

Qðσ;ϕÞ≡ ð1þ e−σÞPðσ;ϕÞ: ð4Þ

Here, Qðσ;ϕÞ is normalized such that
R∞
0 dσ×R

∞
−∞ dϕQðσ;ϕÞ ¼ 1, which directly follows from Eq. (3)
and

R∞
−∞ dσ ¼ R

0
−∞ dσ þ R∞

0 dσ. Then, hϕi can be repre-
sented as the expectation with respect to Qðσ;ϕÞ:

hϕi≡
Z

∞

−∞
dσ

Z
∞

−∞
dϕPðσ;ϕÞϕ

¼
Z

∞

0

dσ
Z

∞

−∞
dϕPðσ;ϕÞϕð1 − e−σÞ

¼
�
ϕ tanh

�
σ

2

��
Q
; ð5Þ

where hαðσ;ϕÞiQ ≡ R∞
0 dσ

R∞
−∞ dϕQðσ;ϕÞαðσ;ϕÞ for the

arbitrary function αðσ;ϕÞ. Equation (5) holds for any
observable ϕðΓÞ that is antisymmetric under time reversal
[Eq. (2)]. Similarly, hσi and hϕ2i are

hσi≡
Z

∞

−∞
dσ

Z
∞

−∞
dϕPðσ;ϕÞσ ¼

�
σ tanh

�
σ

2

��
Q
; ð6Þ

hϕ2i≡
Z

∞

−∞
dσ

Z
∞

−∞
dϕPðσ;ϕÞϕ2 ¼ hϕ2iQ: ð7Þ

Applying the Cauchy-Schwarz inequality to Eq. (5), we
obtain

hϕi2 ¼
�
ϕ tanh

�
σ

2

��
2

Q
≤ hϕ2iQ

�
tanh

�
σ

2

�
2
�

Q
: ð8Þ

Next, we want to show the following series of inequalities:

�
tanh

�
σ

2

�
2
�

Q
≤
�
tanh

�
σ

2
tanh

�
σ

2

���
Q
≤ tanh

�hσi
2

�
:

ð9Þ

In order to show the first inequality part in Eq. (9),
we define ΔðσÞ≡ ðσ=2Þ tanh ðσ=2Þ − atanh½tanh ðσ=2Þ2�.
We find that Δð0Þ ¼ 0 and Δ0ðσÞ ¼ (σ − tanhðσÞ)=
(2þ 2 coshðσÞ) ≥ 0 for σ ≥ 0, which shows ΔðσÞ ≥ 0
for σ ≥ 0 [note that the integration of h� � �iQ with respect
to σ is in ½0;∞Þ, and thus we only have to consider the σ ≥ 0
domain]. Since tanhðσÞ is a strictly increasing function, we
prove the first inequality in Eq. (9). The second inequality
part in Eq. (9) can be proved as follows. Since tanhðσÞ is a
concave function for σ ≥ 0, by using the Jensen inequality,
we find htanh½ðσ=2Þtanhðσ=2Þ�iQ≤tanh½1

2
hσ tanhðσ=2ÞiQ�,

which proves the second inequality part in Eq. (9) by using
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Eq. (6). Combining Eqs. (7)–(9), we obtain hϕ2i=hϕi2 ≥
tanhðhσi=2Þ−1, which yields

Var½ϕ�
hϕi2 ≥

2

ehσi − 1
: ð10Þ

Here, Var½ϕ�≡ hϕ2i − hϕi2 is the variance of ϕ. We refer to
Eq. (10) as the FTUR, which is the main result of the present
Letter.
We make some remarks on Eq. (10). Equation (10) is

valid for arbitrary dynamics as long as the fluctuation
theorem of Eq. (3) holds. Therefore, Eq. (10) can be applied
to continuous-time, as well as discrete-time, Markov
chains. Indeed, the expression of Eq. (10) is equivalent
to the bound obtained for discrete-time Markov chains [24].
The bound of Eq. (10) is always smaller than that of the
well-known TUR

Var½ϕ�
hϕi2 ≥

2

hσi ; ð11Þ

which is valid for continuous-time Markov chains.
Discrete-time Markov chains do not satisfy Eq. (11)
[24,43]. The bound of Eq. (11) has been proven for
current-type observables and for the first-passage time
(the former case was proven for a finite-time case). Still,
as will be demonstrated, Eq. (11) is not satisfied even in
continuous-time Markov chains when we consider an
observable other than the current.
The quantity ϕðΓÞ can be arbitrary as long as Eq. (2)

holds. This condition is typically satisfied by the current but
can be satisfied by other quantities as well. Let |ðΓÞ be the
current, which can of course satisfy |ðΓ†Þ ¼ −|ðΓÞ. Then
any observable h(|ðΓÞ), where hðxÞ is an arbitrary odd
function, satisfies h(|ðΓ†Þ) ¼ −h(|ðΓÞ), and thus the
FTUR holds for h(|ðΓÞ) (this case is considered in the
example section). Moreover, σ can be an observable other
than the total entropy production. Although, for clarity, we
have assumed that σ is the total entropy production in
Eq. (3), any set of observables σ and ϕ that satisfy the
fluctuation theorem of Eq. (3) admit the FTUR of Eq. (10).
In particular, we can obtain the FTUR for which the
thermodynamic cost is the work exerted on the system.
Suppose that the initial distributions for both the forward
and reverse processes are equilibrium distributions. Then,
w, the work exerted on the system, satisfies the Crooks
work relation [9,44] PðwÞ=P†ð−wÞ ¼ eðw−ΔFÞ=T , where T
is the temperature, P†ð−wÞ is the probability of observing
−w in the reverse process, and ΔF is the free energy
difference between equilibrium distributions corresponding
to λðTÞ and λð0Þ. Furthermore, when a symmetric external
protocol λðtÞ ¼ λðT − tÞ is applied, the forward and reverse
processes are indistinguishable, and the free energy differ-
ence vanishes, ΔF ¼ 0, resulting in PðwÞ=Pð−wÞ ¼ ew=T .
Therefore, under these conditions, any observables ϕðΓÞ
satisfying Eq. (2) obey the following FTUR:

Var½ϕ�
hϕi2 ≥

2

ehwi=T − 1
: ð12Þ

Thus far, we have been concerned with stochastic
systems. Historically, the fluctuation theorem was first
demonstrated on deterministic dynamical ensembles [4].
We can show that the FTUR also holds in such determi-
nistic systems. Consider an N-particle system, where qiðtÞ
and piðtÞ denote the coordinates and the momenta
of the ith particle at time t. Let ℾðtÞ≡ ½qðtÞ; pðtÞ�≡
½q1ðtÞ;…; qNðtÞ; p1ðtÞ;…; pNðtÞ� be a point in a phase
space at time t, and let ρðℾ; tÞ be the distribution function
of the phase space at time t. The time evolution of ℾðtÞ is
governed by the deterministic differential equation of _ℾ
(the overdot denotes the time derivative), which is assumed
to be time reversible so that the conjugate dynamics exists.
We assume that the initial ensemble (t ¼ 0) obeys a
given distribution (e.g., equilibrium distribution), and for
t > 0, a constant field is applied to the system. We
define a dissipation from t ¼ 0 to t ¼ T as Σ≡
ln (ρðℾð0Þ; 0)=ρ(ℾðTÞ; 0Þ) − R

T
0 ϒ(ℾðsÞ)ds [10], where

ϒ(ℾÞ≡ ð∂=∂ℾÞ · _ℾ is the phase space compression factor
[45] (the dot “·” denotes the inner product). It is known that
Σ satisfies the fluctuation theorem, PðΣÞ=Pð−ΣÞ ¼ eΣ,
under mild conditions on the initial ensemble and dynamics
[10,45]. Analogous to Eq. (2), we consider an arbitrary
observable Φ defined from t ¼ 0 to t ¼ T, which is
assumed to be antisymmetric under time reversal.
Extending the derivation of Ref. [10], we can show that
the fluctuation theorem PðΣ;ΦÞ=Pð−Σ;−ΦÞ ¼ eΣ holds in
the deterministic dynamical ensembles, which indicates the
satisfaction of the FTUR (see [46] for details of the
derivation and numerical verification).
We next discuss the equality condition of Eq. (10).

When the equality is attained in both Eqs. (8) and (9), the
equality of the FTUR is satisfied. According to the equality
condition of the Cauchy-Schwarz inequality, the equality of
Eq. (8) is satisfied only when ϕ ∝ tanhðσ=2Þ. The first
inequality part in Eq. (9) becomes equality only at σ ¼ 0.
From the equality condition of the Jensen inequality, the
second inequality part in Eq. (9) saturates only when
tanhðσÞ is a linear function, which is asymptotically
achieved for σ → 0. Combining all of these conditions,
we find that the equality of Eq. (10) is asymptotically
satisfied if and only if ϕ ∝ σ and σ → 0. When σ → 0, the
system reduces to equilibrium. It has been reported that the
total entropy production satisfies the equality of the TUR
near equilibrium [19,26,35,39], which agrees with our
equality condition.
Example 1.—We apply the FTUR to an overdamped

particle on a ring [Fig. 1(a)], which has been extensively
investigated in the literature [49,50]. Without loss of
generality, we assume that the circumference of the ring
is 1. We consider
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_x ¼ AðxÞ þ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ; ð13Þ

where AðxÞ is a periodic drift function (AðxÞ ¼ Aðxþ 1Þ),
D > 0 is the noise intensity, and ξðtÞ is the white Gaussian
noise with hξðtÞi ¼ 0 and hξðtÞξðt0Þi ¼ δðt − t0Þ. Let
Pðx; tÞ be the probability density of x at time t. The
Fokker-Planck equation (13) is ∂tPðx; tÞ ¼ −∂xJðx; tÞ,
where Jðx; tÞ≡ AðxÞPðx; tÞ −D∂xPðx; tÞ is the probability
current. We use the following generalized current:
|ðΓÞ≡ R

T
0 ΛðxÞ∘_xdt, where ∘ is the Stratonovich product,

and ΛðxÞ is a projection function. We consider observables
defined by ϕsgnðΓÞ≡ signð|ðΓÞÞ, where signðxÞ is the
signum function. Note that ϕsgn simply returns the sign
of |. Since signðxÞ is an odd function, ϕsgn obeys the FTUR
of Eq. (10).
We explicitly calculate Var½ϕsgn� and hϕsgni. We consider

AðxÞ ¼ f, where f is a constant force applied to the
particle. Since we consider a ring of circumference of 1,
Pðx; tÞ → 1 for t → ∞. Therefore, the steady-state current
is Jss ¼ f. We use ΛðxÞ ¼ 1 in |ðΓÞ, with which the current
simply gives the position at time t ¼ T on the infinite line,
|ðΓÞ ¼ xðTÞ − xð0Þ. Furthermore, on the infinite line,
Pðx; tÞ is a Gaussian distribution with the mean ft and
the variance 2Dt when xð0Þ ¼ 0 [51]. Let Pðϕsgn; tÞ be the
probability of ϕsgn ∈ f−1; 1g at time t, which is expressed

by Pð1;tÞ¼1
2
f1þerf½ðf=2Þ ffiffiffiffiffiffiffiffi

t=D
p �g and Pð−1; tÞ ¼ 1

2
f1−

erf½ðf=2Þ ffiffiffiffiffiffiffiffi
t=D

p �g. The explicit expression of Pðϕsgn; tÞ
confers Var½ϕsgn�=hϕsgni2 ¼ −1 þ erfðf ffiffiffiffiffiffiffiffi

t=D
p

=2Þ−2.
Since the entropy production from t ¼ 0 to t ¼ T is given
by hσi ¼ T

R
1
0 dxD−1AðxÞJss ¼ Tf2=D, we obtain [46]

Var½ϕsgn�
hϕsgni2

¼ −1þ erf

� ffiffiffiffiffiffiffihσip
2

�−2

: ð14Þ

The right-hand side of Eq. (14) is larger than the lower
bound of Eq. (10), −1þ erfð ffiffiffiffiffiffiffihσip

=2Þ−2 ≥ 2=½ehσi − 1�.
This relation is obvious when evaluating both sides numeri-
cally, but we provide a proof in [46].

We plot Var½ϕsgn�=hϕsgni2 [Eq. (14)] in Fig. 2(a) for
AðxÞ ¼ f and AðxÞ ¼ sinð2πxÞ þ f. For AðxÞ ¼ f,
Eq. (14) is depicted by a dotted line, and the lower bounds
of Eqs. (10) and (11) are shown by solid and dashed lines,
respectively. Although Eq. (14) is larger than the bound of
Eq. (10), it does not satisfy Eq. (11), which indicates that
the continuous TUR [Eq. (11)] does not generally hold for
quantities that are antisymmetric under time reversal. We
check the inequality for AðxÞ ¼ sinð2πxÞ þ f, which
has a non-Gaussian distribution, with computer simula-
tion. We randomly select f, T, and D, and calculate
Var½ϕsgn�=hϕsgni2 and hσi for the selected parameter values
as the average of 106 trajectories [the range of the
parameters is shown in the caption of Fig. 2(a)], and the
realizations are shown by circles in Fig. 2(a). We can see
that Var½ϕsgn�=hϕsgni2 for AðxÞ ¼ sinð2πxÞ þ f is larger
than the result of AðxÞ ¼ f, indicating that the case of
AðxÞ ¼ f appears to be the lower bound case of this
particular example. We again confirm that the conventional
TUR is not satisfied for larger hσi.
Example 2.—Next, we consider an overdamped dragged

Brownian particle [Fig. 1(b)] [52,53] to test the FTUR of
Eq. (12). The dragged Brownian particle is important in
stochastic thermodynamics from both theoretical and
experimental viewpoints. We consider the following
Langevin equation: _x ¼ −∂xU(x; λðtÞ)þ ffiffiffiffiffiffiffi

2D
p

ξðtÞ, where
Uðx; λÞ≡ βðx − λÞ2=2 is a potential function (β > 0 is a
model parameter), λðtÞ is an external protocol, and ξðtÞ and
D are the same as in Eq. (13). We consider a time-
symmetric protocol defined by

λðtÞ ¼
	 2l

T t 0 ≤ t < T
2

− 2l
T tþ 2l T

2
≤ t ≤ T;

ð15Þ

(a) (b) (c)

FIG. 1. Models considered in examples 1 and 2. (a) Particle on
a ring topology with the drift term AðxÞ in example 1. (b) Dragged
Brownian particle, where the potential is manipulated by a
protocol λðtÞ in example 2. (c) Protocol λðtÞ, defined by
Eq. (15), as a function of t, which is applied to the dragged
Brownian particle shown in diagram (b). Here, l denotes the
height of the protocol.

(a) (b)

10-2 10-1 100 101 10210-2

100

102

10-1 100 101 10210-2

100

102

FIG. 2. Var½ϕ�=hϕi2 and the lower bounds of the TUR and
FTUR as a function hσi (or hwi). The lower bounds of Eqs. (10)
and (11) are depicted by solid and dashed lines, respectively.
(a) Results of the particle on a ring in example 1. The dotted
line and circles denote Var½ϕsgn�=hϕsgni2 for AðxÞ ¼ f and
AðxÞ ¼ sinð2πxÞ þ f, respectively, where f, T, and D are
randomly selected from f ∈ ½0.01; 3.0�, T ∈ ½0.1; 3.0�, and
D ∈ ½0.01; 1.0�. (b) Results of the dragged Brownian particle
in example 2. Circles denote Var½ϕpos�=hϕposi2 for randomly
selected β, l, and T withD ¼ 1. Note that β, l, and T are selected
as β ∈ ½0.01; 10.0�, l ∈ ½0.01; 10.0�, and T ∈ ½0.01; 10.0�.
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where l is the height of the signal [Fig. 1(c)]. Note
that λðtÞ of Eq. (15) satisfies time symmetry,
λðT − tÞ ¼ λðtÞ. Suppose that the system is in equilibrium
at t ¼ 0, Pðx; 0Þ ¼ Peq(x; λð0Þ), where Peqðx; λÞ≡
N exp ( −Uðx; λÞ=D) is the equilibrium distribution cor-
responding to λ (N is a normalization constant). We
consider an observable ϕposðΓÞ≡ |ðΓÞ with ΛðxÞ ¼ 1.
Here, ϕposðΓÞ simply gives the position of the particle at
time t ¼ T, ϕposðΓÞ ¼ xðTÞ − xð0Þ. Based on these
assumptions, ϕposðΓÞ satisfies the FTUR given by
Eq. (12), with T replaced by D. In the dragged
Brownian particle, the work w exerted on the particle is
given by [2] wðΓÞ ¼ R

T
0 dt∂λUðx; λÞ_λ. Since the probability

density Pðx; tÞ is a Gaussian distribution for all t and λðtÞ is
a piecewise linear function [Eq. (15)], Var½ϕpos�=hϕposi2
and hwi can be calculated analytically [46]:

Var½ϕpos�
hϕposi2

¼ DβT2ð1 − e−βTÞ
2l2ðe−βT − 2e−βT=2 þ 1Þ2 ; ð16Þ

hwi ¼ 4l2ð−e−βT þ βT þ 4e−βT=2 − 3Þ
βT2

: ð17Þ

We randomly select β, T, and l with D ¼ 1, and calculate
VarðϕposÞ=hϕposi2 and the average work hwi for the
selected parameter values [the range of the parameters is
shown in the caption of Fig. 2(b)]. We repeat this
calculation many times and plot VarðϕposÞ=hϕposi2 as a
function of hwi in Fig. 2(b). Here, 2=½ehwi=D − 1� and
2=ðhwi=DÞ are depicted by solid and dashed lines, respec-
tively. We can confirm that all the realizations (circles) are
above the bound of Eq. (12), indicating that Eq. (12) holds
for the dragged Brownian particle. Still, we can see that all
the realizations are even above 2=ðhwi=DÞ (dashed line).
This tighter bound is an analogue of Eq. (11) for the system
subject to the external protocol. Indeed, we can prove that
Var½ϕpos�=hϕposi2 ≥ 2=ðhwi=DÞ, and this inequality satu-
rates when βT → 0 [46]. This result induces us to con-
jecture that the FTUR of Eq. (12) has this tighter bound for
general continuous-time systems with equilibrium initial
distributions and time-symmetric external protocols.
We also tested the FTUR for a discrete-time random

walk on a ring with an observable counting the number of
laps, and we confirmed that the FTUR is satisfied for this
system (see [46]).
Conclusion.—In the present Letter, we have derived the

FTUR solely from the fluctuation theorem with respect to
the total entropy production and the observable, which is
antisymmetric under time reversal. Although the bound of
the FTUR is weaker than that of the conventional TUR, the
FTUR is general in the sense that it can handle systems that
have not been covered by the previously reported TURs.
Since the fluctuation theorem is the central relation in

nonequilibrium thermodynamics, the present study can be a
basis for obtaining other thermodynamic bounds.
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