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The Anderson localization transition is one of the most well studied examples of a zero temperature
quantum phase transition. On the other hand, many open questions remain about the phenomenology of
disordered systems driven far out of equilibrium. Here we study the localization transition in the
prototypical three-dimensional, noninteracting Anderson model when the system is driven at its boundaries
to induce a current carrying nonequilibrium steady state. Recently we showed that the diffusive phase
of this model exhibits extensive mutual information of its nonequilibrium steady-state density matrix.
We show that this extensive scaling persists in the entanglement and at the localization critical point, before
crossing over to a short-range (area-law) scaling in the localized phase. We introduce an entanglement
witness for fermionic states that we name the mutual coherence, which, for fermionic Gaussian states, is
also a lower bound on the mutual information. Through a combination of analytical arguments and
numerics, we determine the finite-size scaling of the mutual coherence across the transition. These results
further develop the notion of entanglement phase transitions in open systems, with direct implications for
driven many-body localized systems, as well as experimental studies of driven-disordered systems.
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The notion that the entropy due to entanglement can be
extensive in quantum many-body systems came into sharp
focus with the introduction of the eigenstate thermalization
hypothesis (ETH), which postulates that even single
eigenstates of thermalizing (chaotic) Hamiltonians are in
thermal equilibrium [1–3]. Macroscopic thermodynamic
entropy arises in this formulation through intrinsic exten-
sive (“volume-law”) entanglement of the eigenstates.
Historically, these concepts arose from studying founda-
tional questions in statistical mechanics and quantum
aspects of black hole thermodynamics [4,5]; however,
advances in isolating and controlling quantum many-body
systems now allow these foundational concepts about the
role of entanglement in statistical mechanics to be tested
experimentally through both direct measurements [6–11]
and indirect methods [12–23].
However, there are also many situations where the

entanglement entropy is not extensive. This includes
mixed-state density operators of thermal equilibrium
Gibbs states and ground states of many local
Hamiltonians [24,25], as well as eigenstates of systems
that are many-body localized (MBL) [26–29]. In the latter
case, there is an entanglement phase transition at the MBL
transition between extensive eigenstate entanglement in the
ETH-obeying thermal phase and subextensive (only boun-
dary-law) entanglement in the MBL phase where the ETH
is violated [30–33]. Other examples of entanglement phase
transitions have been analyzed in a random tensor network
model [34] and in quantum circuit models with measure-
ments [35–38]. Because of the fundamental difficulty in
distinguishing classical and quantum correlations in mixed

states [39], the entanglement properties of many-body
mixed state density operators in microscopic models have
generally been less studied than pure states, but there are
examples of boundary-driven open systems with extensive
entanglement in their long time states [40].
In this Letter, we further develop the phenomenology of

entanglement phase transitions in open systems by studying
the Anderson localization transition from this perspective.
We consider the prototypical case of single-particle
Anderson localization on a three-dimensional lattice with
a quenched random potential [41]. But we study this as a
noninteracting many-fermion open system that is boundary
driven. The driving is by clean conducting leads with
incoming scattering states populated at different chemical
potentials at the two ends of a disordered “sample.”
We examine the nonequilibrium steady state (NESS) of
this driven open system.
Recently, we showed that the NESS density matrix

exhibits volume-law mutual information in the diffusive
phase of this system [40]. Here, we extend this analysis to
study the entanglement, as well as the localized phase and
the localization critical point. We find that the localized
phase exhibits area-law mutual information, as might be
expected. We find that the mutual information remains
volume law at the critical point and in the diffusive phase.
Throughout this work, we use an entanglement witness for
fermionic states that we introduce here and name the
“mutual coherence.” This entanglement metric has the
advantage that its disorder average can be directly related
to average two-particle Green’s functions, whose general
behaviors are well understood in noninteracting Anderson
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models. Furthermore, for Gaussian fermionic states, the
mutual coherence is a lower bound on the mutual infor-
mation. Combining single-parameter scaling theory and
numerics with simple physical arguments based on the
production, spreading, and decoherence of operators in this
system, we determine the finite-size critical scaling of the
mutual coherence through the localization transition.
Because of the relative dearth of examples of nonequili-
brium phase transitions where entanglement density serves
as an order parameter, we believe this example can serve as
a useful point of reference, with potentially immediate
consequences for the analysis of current-driven MBL
systems [42–45]. In addition, these results are broadly
applicable to noninteracting models of disordered systems,
making our predictions experimentally testable in a wide
range of physical systems on mesoscopic length scales.
Although the Anderson model was originally introduced

in 1958 [41], systematic investigations of metal-insulator
transitions in noninteracting versions of these models only
began in the 1970s (for an overview see Ref. [46]). Since
that time, there has been continued progress on under-
standing these transitions from a variety of angles including
approximate field theory descriptions [47], numerical
computations [48], and rigorous mathematics [49].
Despite this sustained effort, the effects we describe in
this work have, to our knowledge, not been previously
identified. We believe the reason for this omission is that
the point of departure for our analysis is rather unconven-
tional in that we are interested in the global entanglement
properties of the many-body state of the fermions when
they are driven out of equilibrium by a chemical potential
bias. Spectral and spatial statistics (including entanglement
properties [50]) of single-particle wave functions at criti-
cality have been extensively analyzed [51,52]; however, the
effects considered in this Letter only appear when perform-
ing weighted sums over all single-particle scattering states,
with nonequilibrium populations. Because part of the
motivation for this work is to gain insights into noninteract-
ing Anderson localization transitions that may also apply to
interacting systems andMBL,we focus on arguments rooted
in random quantum circuit models [40,53,54], which are
more easily generalized to account for interactions [55–58].
In the Supplemental Material, we present an alternative
derivation of the entanglement scaling analysis that more
directly connects to past work on Anderson models [59].
In both cases, we find that the volume-law mutual informa-
tion and entanglement that builds up at the critical point, and
in the diffusive phase, arises from a subtle interplay between
the production and decoherence of long-range correlations.
We expect the general insights obtained from this analysis
to apply more broadly to nonequilibrium steady states in
current-driven, subballistic systems.
Despite some similarities, there are a number of crucial

distinctions between the entanglement phase transition
studied in this work and the eigenstate entanglement

transition studied in MBL. One difference is that here
we consider the single mixed NESS of an open quantum
system driven out of equilibrium, whereas the MBL
transition occurs for exponentially many eigenstates of a
closed quantum system. A second important distinction
is that the volume-law entanglement found here in the
diffusive phase relies on the many-body system being
noninteracting: according to our previous analysis, an
interacting driven and diffusive system should have only
area-law entanglement [40]. The phases in the thermal-to-
MBL entanglement transition, on the other hand, are
already fully interacting and their entanglement properties
are thus expected to be robust to small local changes to the
Hamiltonian.
Much of our analysis applies quite broadly to any non-

interacting model exhibiting an Anderson metal-insulator
transition. For concreteness, we focus on the setup shown in
Fig. 1(a). Two clean, semi-infinite quasi-1D wires with
transverse dimensions L0 × L0 are linked by a cubic dis-
ordered region of length L0. The Hamiltonian is given by

H ¼
X
hxyi

c†xcy þ
X
x

Vxc
†
xcx; ð1Þ

where cx are fermionic annihilation operators for site x, we
work in units where the nearest-neighbor hopping rate is
one, and the quenched disorder at each site Vx are drawn
from independent uniform distributions between �W=2
(Vx ¼ 0 in the leads). We assume periodic boundary
conditions in the transverse directions, and use a simple
cubic lattice. The localization transition in the disordered
region occurs at a critical disorder strength in these units
Wc ≈ 16.5 [61–63]. We are interested in the nonequili-
brium steady state (NESS) defined by the condition that
the incoming scattering states from the left or right lead are
in thermal equilibrium with the same temperature T and
different chemical potentials μL=R. More precisely, defin-
ing aαnE as the fermionic annihilation operator for the
incoming scattering states with energy E in transverse
channel n and lead α, we take

faαnE; aβ†mE0g ¼ δðE − E0Þδαβδmn; ð2Þ

haα†nEaβmE0 i ¼ δðE − E0ÞδαβδmnnαE; ð3Þ

where nαE ¼ ½eðE−μαÞ=T þ 1�−1 is the Fermi function. It is
further convenient to define sum and difference Fermi
functions ns;dE ¼ ðnLE � nREÞ=2. To avoid complications
associated with bound states in the sample, we allow for
leads with anisotropic hopping in the longitudinal (x1)
direction tk > t⊥ [48]. Similarly, to avoid mobility edge
effects we take μL=R near zero energy with a chemical
potential bias δμ ¼ jμL − μRj ≫ T and much less than the
width of the mobility edge in the sample.
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Mutual coherence.—Because of the absence of inter-
actions, all correlation functions of the NESS density
matrix ρ can be expressed in terms of the second-order
correlation functions,

Gxy ¼ hc†xcyi ¼ Tr½ρc†xcy�; ð4Þ
according to Wick’s theorem [64–66]. Particle conservation
implies that hcxcyi ¼ 0. The unique correspondence
between the density matrix and the two-point function
for Gaussian states motivates us to introduce the mutual
coherence as a particularly simple measure of entanglement
and correlations between regions A and B:

CðA∶BÞ ¼ 2
X

x∈A;y∈B
jhc†xcyij2 þ jhcxcyij2; ð5Þ

which measures the overall magnitude of spatial coher-
ences between the fermions. Within the set of fermionic
states, CðA∶BÞ serves as an entanglement witness because
it is zero between all separable fermionic states. Here, we
define separable fermionic states with respect to a biparti-
tion A and B as the set of states that can be formed by local
fermionic operations and classical communication on A and
B [67]. This definition implies that each region has a well-
defined fermionic parity so that the correlations

hc†i cji ¼ hc†i ihcji ¼ 0; hcicji ¼ hciihcji ¼ 0; ð6Þ
vanish in a separable state for i ∈ A and j ∈ B. As a result,
all such separable fermionic states have zero mutual
coherence. For Gaussian fermionic states, the mutual
coherence is a lower bound on the mutual information
[59]. Moreover, for Gaussian states near infinite temper-
ature, it accurately approximates both the mutual informa-
tion and the fermionic entanglement negativity [68].
We can move between the original fermionic operators

and the scattering states using the scattering state wave
functions ϕα

nEðxÞ

cx ¼
X
nα

Z
dEϕα

nEðxÞaαnE; aαnE ¼
X
x

ϕα�
nEðxÞcx; ð7Þ

where the wave functions are normalized to have unit
current in the incoming lead [69]. For a fermionic system
whose incoming scattering states are at local equilibrium in
each lead, the two-point function takes the form

Gxy ¼ Gs
xy þ Gd

xy ¼
Z

dE½qsEðx; yÞ þ qdEðx; yÞ�;

qs;dE ðx; yÞ ¼
X
n

½ϕL�
nEðxÞϕL

nEðyÞ � ϕR�
nEðxÞϕR

nEðyÞ�ns;dE ; ð8Þ

where we have separated out the contributions to Gxy

into an “equilibrium” (s) part that is symmetric under the
exchange μL ↔ μR and a “nonequilibrium” (d) part that

vanishes when δμ ¼ 0. Time-reversal symmetry of H
implies that Gs

xy is real and carries zero current.
Diffusive phase.—The nonequilibrium density profile

across the transition is shown in Fig. 1(b). In the diffusive
phase, the coarse grained density profile follows from
the steady-state solution to the diffusion equation
D∇2δnðxÞ ¼ 0: δnðxÞ=δnð0Þ ¼ 1–2x1=L0. Here D is the

diffusion constant, δnðxÞ ¼ Gd
xx is the nonequilibrium

contribution to the density profile, and we have taken
μL ¼ −μR > 0.
It was shown in our previous work that the mutual

coherence (first defined here) exhibits a volume-law scaling
in the diffusive phase [40]. An intuitive picture for this
scaling was developed using a random circuit model, which
can be realized in the present context by allowing both the
nearest-neighbor hopping rates and disorder inH to change
randomly in time and space at discrete intervals. The time
dependence of the parameters prevents localization and
heats up the system, but with a density gradient between the
left and right leads. Evolving the coherences jhc†xcyij2
under HðtÞ, one finds that they have an effective source

term near x ¼ y proportional to hJðxÞi · ∇⃗hnðxÞi, where
JðxÞ is the current operator and ∇⃗nðxÞ is the local density
gradient. This can be interpreted as a microscopic realiza-
tion of Ohm’s law of dissipation. A schematic picture of the
subsequent operator dynamics for the coherences is shown
in Fig. 1(a). In effect, the coherences generated by the
source live for a diffusive Thouless time τTh ¼ L2

0=D,
before escaping into the reservoirs. The time-averaged

current density satisfies Fick’s law hJðxÞi ¼ −D∇⃗hnðxÞi,
which leads to the scaling of the source term as

(a) (b)

FIG. 1. (a) We study a noninteracting, boundary-driven fer-
mionic system consisting of a cubic disordered region of size
L0 × L0 × L0 coupled to clean leads on both ends. The left or
right incoming scattering states (denoted by incoming arrows) are
taken to be at thermodynamic equilibrium with the same temper-
ature, but different chemical potentials μL=R. Red and blue traces
show the diffusive operator dynamics of an initially local density
operator in the random circuit version of this model [40].
(b) Nonequilibrium density profile δnðxÞ in the limit L0 → ∞
for the diffusive phase 0 < W < Wc, the critical point W ¼ Wc,
and the localized phase W > Wc for ξ=L0 ¼ 0.05 and a ¼ 0.25.
In the localized phase, transport occurs dominantly through a
subextensive number of resonant states near the center of the
sample.
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D½δnð0Þ�2=L2
0. Thus, the local production rate for the

coherences scales as ∼D=L2
0 and their lifetime scales as

∼L2
0=D. Defining the coherence density of site x with a

given region A as cAðxÞ ¼ CðA∶fxgÞ, we can see that the
coherence production rate balances with the decay rate to
give an order one coherence density of a site in the bulk
with the rest of the sample. Crucially, these coherences are
spread fairly uniformly across the entire sample, which
implies that this finite coherence density will persist when
we take A to be given by the left half the sample L.
Summing the coherence density over the right half of the
sample R gives rise to the volume-law scaling for CðL∶RÞ.
To generalize this analysis to the time-independent case,
one has to take into account the frequency dependence of
the diffusion constant and other effects that arise due to
energy conservation in this model. We present a formalism
in the Supplemental Material [59] that allows one to include
these effects in the scaling analysis. Figure 2(a) presents
numerical evidence for this volume-law scaling in the
diffusive phase. The nonequilibrium contribution to the
mutual coherence CdðL∶RÞ≡ 2

P
x∈L;y∈RjGd

xyj2 was com-
puted from scattering state wave functions obtained via a
transfer matrix method [48].
Critical point.—At the critical point (W ¼ Wc) in an

infinite disordered system, single-parameter scaling theory
predicts a scale dependent diffusion constant DðxÞ ∼
D0=jxj [70]. In the case of the open geometry considered
here, one can similarly describe the transport through the
sample in terms of an inhomogeneous diffusion constant
DðxÞ ¼ D0=ð1þ xB=xcÞ, where xB ¼ minðx1; L0 − x1Þ is
the distance to the nearest boundary and D0 and xc are free
parameters [71]. The steady-state profile shown in Fig. 1(b)

is modeled with the solution to the diffusion equation

∇⃗ ·DðxÞ∇⃗δnðxÞ ¼ 0.
In the case of the mutual coherence, we can find the local

production rate for the coherences ∼DðxÞ=L2
0 by applying

similar arguments as in the diffusive phase. The production
rate in the bulk of the sample ∼L−3

0 is suppressed by the
scale-dependent diffusion constant. However, the time
for these coherences to reach the boundary now scales
as τTh ∼ L3

0. Thus, we still expect an order 1 coherence
density for each site in the bulk with the rest of the sample.
This coherence is again spread fairly uniformly throughout
the sample, leading to a volume-law scaling for CðL∶RÞ.
Our numerical results shown in Fig. 2(a) agree with this
scaling analysis. Note that we take δμ much less than the
width of the single-particle mobility edge, but still much
greater than the single-particle level spacing in the sample
∼L−3

0 . We leave a full analysis of the crossover at the
mobility edge for future work.
Localized phase.—For the localized phase, the physical

mechanism underlying transport is quite distinct from the
critical point and diffusive phase. In this case, transport can
only occur due to the exponentially weak overlap of the
localized states in the sample with both leads. We refer to
the localized states near the center of the sample with nearly
equal (but still exponentially small) tunneling rates to both
leads as “resonant” states. One signature that resonant
states dominate transport is that the density profile exhibits
a sharp steplike feature as shown in Fig. 1(b). The width of
the step is determined by the fluctuations in the tunneling
rate of the resonant states to the leads, which directly maps
to a well-studied problem in the statistics of directed paths
in random media [72–74]. In dimension d, one thus expects
the width of the step to scale as ξ1−aLa

0 , where ξ ∼ jW −
Wcj−ν is the localization length, ν ≈ 1.57 in three dimen-
sions, and a ≈ 1=ðdþ 1Þ [74]. One can partially account
for these effects with a spatially varying diffusion constant
of the form DðxÞ ∼ e−x1ðL0−x1Þ=ξ2ð1−aÞL2a

0 [75,76], which was
used to model the density profile in Fig. 1(b).
In determining the mutual coherence, it is important to

note that, although the current flowing through the resonant
states is exponentially small (leading to an exponentially
weak production rate for the coherences), the slow pro-
duction rate of coherences is compensated by their expo-
nentially long lifetime. Thus, each point in the localized
wave function of a resonant state has order one coherence
density with the rest of that state. In the Supplemental
Material, we provide an explicit calculation of this effect in
a simplified 1D model for the resonant states as a two-
mirror cavity [59]. One distinction from the diffusive phase
and the critical point, however, is that these coherences are
now confined within a localization length ξ of the source
due to the exponential localization of the wave functions.
As a result, we predict that the scaling for CðL∶RÞ is upper
bounded by the area law ∼ξL2

0 in the localized phase [77].

(a) (b)

FIG. 2. (a) Scaling of CdðL∶RÞ between the left and right half
of the sample in the diffusive phase (W ¼ 10), the critical point
(W ¼ 16.5), and in the localized phase (W ¼ 21). We took a
fixed chemical potential bias δμ=Wc ¼ 3 × 10−3 and varied L0

between 12 and 20. The red, blue, and black dashed lines are fits
to volume, volume, and area-law scaling, respectively. (b) Finite
size scaling of dCdðL∶RÞ=dx. The derivative was evaluated at
x ¼ 24 to ensure δμ=ETh ∝ x=jyjν > 1 for jyj > 1 and δμ is much
larger than the level spacing near the critical point jyj ≪ 1. The
black dashed line shows a fit to Aξ=L0 on the insulating side,
consistent with a crossover to area law scaling for the mutual
coherence. In both (a)–(b) we took ðtk; t⊥Þ ¼ ð3; 1Þ in the leads
and T ¼ 0.
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Another important difference is that the spatial location of
the resonant states fluctuates strongly within the sample on
the macroscopic scale ∼ξ1−aLa

0 . This latter point implies
that, deep in the localized phase ðξ ≪ L0Þ, the mutual
coherence between the left and right half has contributions
from only a finite fraction of the resonant states ≳ξa=La

0 .
In single-parameter scaling theory, this could lead to the
scaling for the mutual coherence with ξ as ξ1þbL2−b

0 for
some 0 ≤ b < 1. Our numerical results in Fig. 2(a)–2(b) are
consistent with an area-law scaling (b ¼ 0), but, due to the
limited sizes we are able to access, we cannot clearly
resolve this point in the present work.
Scaling function.—Assuming the validity of single-

parameter scaling theory [78], we can write a scaling
function for the mutual coherence for δμ much greater
than T and much less than the width of the mobility edge

CdðL∶RÞ ¼ Lα
0f½δμL3

0=Wc; ðW=Wc − 1ÞL1=ν
0 �; ð9Þ

where the first argument x ¼ δμL3
0=Wc measures δμ in

units of the level spacing in the sample and the second
argument is y ¼ ðW=Wc − 1ÞL1=ν

0 ∝ ðL0=ξÞ1=ν. According
to our scaling analysis and numerical results at the critical
point, the scaling dimension of the mutual coherence is
α ¼ 0. Instead, the volume-law scaling arises from the
scaling function fðx; yÞ being linear in x at large values of
x for y ≤ 0. Figure 2(b) shows our numerical finite size
scaling analysis of dCdðL∶RÞ=dx, where we see a collapse
of the data for large systems sizes. The numerical data are
consistent with a crossover to area-law scaling in the
localized phase based on the large y behavior of the scaling
function as fðx; yÞ ∼ x=yν ∝ δμξL2

0.
Conclusion.—In this work, we revisited the Anderson

localization transition as an example of an entanglement
phase transition in open quantum many-body systems.
Future work could investigate the many-body localization
transition from a similar perspective, where interactions
may qualitatively change the scaling behavior on both sides
of the localization transition. Another promising direction
is to experimentally study the mutual coherence in driven-
disordered systems accessible by local probes such as
ultracold atoms, two-dimensional condensed matter sys-
tems, or scalable quantum information platforms.
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S. Choi, V. Khemani, J. Léonard, and M. Greiner, Probing
entanglement in a many-body-localized system, Science 364,
256 (2019).

[12] A. I. Larkin and Yu. N. Ovchinnikov, Quasiclassical method
in the theory of superconductivity, Zh. Eksp. Teor. Fiz. 55,
2262 (1969) [Sov. Phys. JETP 28, 1200 (1965)].

[13] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R.
Blatt, and C. F. Roos, Quasiparticle engineering and en-
tanglement propagation in a quantum many-body system,
Nature (London) 511, 202 (2014).

[14] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M.
Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe,
Non-local propagation of correlations in quantum systems
with long-range interactions, Nature (London) 511, 198
(2014).

[15] T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M.
Endres, and C. Gross, Spatially Resolved Detection of a
Spin-Entanglement Wave in a Bose-Hubbard Chain, Phys.
Rev. Lett. 115, 035302 (2015).

[16] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Measuring the scrambling of quantum information, Phys.
Rev. A 94, 040302(R) (2016).

[17] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D.M.
Stamper-Kurn, J. E.Moore, andE. A.Demler, Interferometric
Approach to Probing Fast Scrambling, arXiv:1607.01801.

[18] G. Zhu, M. Hafezi, and T. Grover, Measurement of many-
body chaos using a quantum clock, Phys. Rev. A 94, 062329
(2016).

[19] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng,
and J. Du, Measuring Out-of-Time-Order Correlators on a
Nuclear Magnetic Resonance Quantum Simulator, Phys.
Rev. X 7, 031011 (2017).

PHYSICAL REVIEW LETTERS 123, 110601 (2019)

110601-5

https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.93.110501
https://doi.org/10.1103/PhysRevLett.109.020505
https://doi.org/10.1103/PhysRevLett.109.020505
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1103/PhysRevX.6.041033
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13450
https://doi.org/10.1103/PhysRevLett.115.035302
https://doi.org/10.1103/PhysRevLett.115.035302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
http://arXiv.org/abs/1607.01801
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011


[20] K. X. Wei, C. Ramanathan, and P. Cappellaro, Exploring
Localization in Nuclear Spin Chains, Phys. Rev. Lett. 120,
070501 (2018).

[21] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Measuring out-of-time-order
correlations and multiple quantum spectra in a trapped-
ion quantum magnet, Nat. Phys. 13, 781 (2017).

[22] M. Gärttner, P. Hauke, and A. M. Rey, Relating Out-of-
Time-Order Correlations to Entanglement via Multiple-
Quantum Coherences, Phys. Rev. Lett. 120, 040402 (2018).

[23] M. Niknam, L. F. Santos, and D. G. Cory, Sensitivity of
quantum information to environment perturbations mea-
sured with the out-of-time-order correlation function,
arXiv:1808.04375.

[24] M.M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac,
Area Laws in Quantum Systems: Mutual Information and
Correlations, Phys. Rev. Lett. 100, 070502 (2008).

[25] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[26] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenom-
enology of fully many-body-localized systems, Phys. Rev.
B 90, 174202 (2014).

[27] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[28] J. Z. Imbrie, Diagonalization and Many-Body Localization
for a Disordered Quantum Spin Chain, Phys. Rev. Lett. 117,
027201 (2016).

[29] J. Z. Imbrie, On Many-Body Localization for Quantum Spin
Chains, J. Stat. Phys. 163, 998 (2016).

[30] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal–
insulator transition in a weakly interacting many-electron
system with localized single-particle states, Ann. Phys.
(Amsterdam) 321, 1126 (2006).

[31] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting
Electrons in Disordered Wires: Anderson Localization and
Low-T Transport, Phys. Rev. Lett. 95, 206603 (2005).

[32] A. Pal and D. A. Huse, Many-body localization phase
transition, Phys. Rev. B 82, 174411 (2010).

[33] R. Nandkishore and D. A. Huse, Many-body localization
and thermalization in quantum statistical mechanics, Annu.
Rev. Condens. Matter Phys. 6, 15 (2015).

[34] R. Vasseur, A. C. Potter, Y.-Z. You, and A.W.W. Ludwig,
Entanglement transitions from holographic random tensor
networks, arXiv:1807.07082.

[35] D. Aharonov, Quantum to classical phase transition in noisy
quantum computers, Phys. Rev. A 62, 062311 (2000).

[36] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B
98, 205136 (2018).

[37] B. Skinner, J. Ruhman, and A. Nahum, Measurement-
Induced Phase Transitions in the Dynamics of Entangle-
ment, Phys. Rev. X 9, 031009 (2019).

[38] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,
Unitary-projective entanglement dynamics, Phys. Rev. B
99, 224307 (2019).

[39] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[40] M. J. Gullans and D. A. Huse, Entanglement Structure of
Current-Driven Diffusive Fermion Systems, Phys. Rev. X 9,
021007 (2019).

[41] P. W. Anderson, Absence of diffusion in certain random
lattices, Phys. Rev. 109, 1492 (1958).

[42] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive and
Subdiffusive Spin Transport in the Ergodic Phase of a
Many-Body Localizable System, Phys. Rev. Lett. 117,
040601 (2016).

[43] F. Setiawan, D.-L. Deng, and J. H. Pixley, Transport proper-
ties across the many-body localization transition in quasi-
periodic and random systems, Phys. Rev. B 96, 104205
(2017).

[44] V. K. Varma, A. Lerose, F. Pietracaprina, J. Goold, and
A. Scardicchio, Energy diffusion in the ergodic phase of a
many body localizable spin chain, J. Stat. Mech. (2017)
053101.

[45] B. Buča and T. Prosen, Strongly correlated non-equilibrium
steady states with currents—quantum and classical picture,
Eur. Phys. J. Spec. Top. 227, 421 (2018).

[46] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[47] K. Efetov, Supersymmetry in Disorder and Chaos
(Cambridge University Press, Cambridge, England, 1999).

[48] P. Markos, Numerical Analysis of the Anderson Localiza-
tion, Acta Phys. Slovaca Rev. Tutorials 56, 561 (2006).

[49] T. Spencer, Mathematical aspects of Anderson localization,
Int. J. Mod. Phys. B 24, 1621 (2010).

[50] X. Jia, A. R. Subramaniam, I. A. Gruzberg, and S.
Chakravarty, Entanglement entropy and multifractality at
localization transitions, Phys. Rev. B 77, 014208 (2008).

[51] M. Janssen, Multifractal analysis of broadly-distributed
observables at criticality, Int. J. Mod. Phys. B 08, 943
(1994).

[52] B. Huckestein, Scaling theory of the integer quantum hall
effect, Rev. Mod. Phys. 67, 357 (1995).

[53] T. Rakovszky, F. Pollmann, and C.W. von Keyserlingk,
Diffusive Hydrodynamics of Out-of-Time-Ordered Corre-
lators with Charge Conservation, Phys. Rev. X 8, 031058
(2018).

[54] V. Khemani, A. Vishwanath, and D. A. Huse, Operator
Spreading and the Emergence of Dissipation in Unitary
Dynamics with Conservation Laws, Phys. Rev. X 8, 031057
(2018).

[55] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum
Entanglement Growth under Random Unitary Dynamics,
Phys. Rev. X 7, 031016 (2017).

[56] A. Nahum, S. Vijay, and J. Haah, Operator Spreading in
Random Unitary Circuits, Phys. Rev. X 8, 021014 (2018).

[57] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Operator Hydrodynamics, Otocs, and Entan-
glement Growth in Systems without Conservation Laws,
Phys. Rev. X 8, 021013 (2018).

[58] A. Nahum, J. Ruhman, and D. A. Huse, Dynamics of
entanglement and transport in one-dimensional systems
with quenched randomness, Phys. Rev. B 98, 035118
(2018).

[59] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.110601 for a scal-
ing analysis of the mutual coherence that takes energy

PHYSICAL REVIEW LETTERS 123, 110601 (2019)

110601-6

https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevLett.120.040402
http://arXiv.org/abs/1808.04375
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.117.027201
https://doi.org/10.1103/PhysRevLett.117.027201
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
http://arXiv.org/abs/1807.07082
https://doi.org/10.1103/PhysRevA.62.062311
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevX.9.021007
https://doi.org/10.1103/PhysRevX.9.021007
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevB.96.104205
https://doi.org/10.1103/PhysRevB.96.104205
https://doi.org/10.1088/1742-5468/aa668b
https://doi.org/10.1088/1742-5468/aa668b
https://doi.org/10.1140/epjst/e2018-00100-9
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1142/S0217979210064538
https://doi.org/10.1103/PhysRevB.77.014208
https://doi.org/10.1142/S021797929400049X
https://doi.org/10.1142/S021797929400049X
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110601


conservation into account, a cavity model for the localized
phase, and bounds of the mutual coherence on the mutual
information. See also additional Ref. [60].

[60] J. Eisert, V. Eisler, and Z. Zimborás, Entanglement neg-
ativity bounds for fermionic gaussian states, Phys. Rev. B
97, 165123 (2018).

[61] A. MacKinnon and B. Kramer, One-Parameter Scaling of
Localization Length and Conductance in Disordered Sys-
tems, Phys. Rev. Lett. 47, 1546 (1981).

[62] J. L. Pichard and G. Sarma, Finite size scaling approach to
Anderson localisation, J. Phys. C 14, L127 (1981).

[63] K. Slevin and T. Ohtsuki, Critical exponent for the Ander-
son transition in the three-dimensional orthogonal univer-
sality class, New J. Phys. 16, 015012 (2014).

[64] M.-C. Chung and I. Peschel, Density-matrix spectra of
solvable fermionic systems, Phys. Rev. B 64, 064412 (2001).

[65] S.-A. Cheong and C. L. Henley, Many-body density ma-
trices for free fermions, Phys. Rev. B 69, 075111 (2004).

[66] I. Peschel and V. Eisler, Reduced density matrices and
entanglement entropy in free lattice models, J. Phys. A 42,
504003 (2009).

[67] M.-C. Bañuls, J. I. Cirac, and M.M. Wolf, Entanglement in
fermionic systems, Phys. Rev. A 76, 022311 (2007).

[68] H. Shapourian and S. Ryu, Entanglement negativity of
fermions: Monotonicity, separability criterion, and classifi-
cation of few-mode states, Phys. Rev. A 99, 022310 (2019).

[69] J. B. Pendry, A. MacKinnon, and P. J. Roberts, Universality
classes and fluctuations in disordered systems, Proc. R. Soc.
A 437, 67 (1992).

[70] J. T. Chalker, Scaling and eigenfunction correlations near a
mobility edge, Physica (Amsterdam) 167A, 253 (1990).

[71] B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma,
Reflection and Transmission of Waves Near the Localiza-
tion Threshold, Phys. Rev. Lett. 84, 4333 (2000).

[72] D. A. Huse and C. L. Henley, Pinning and Roughening of
Domain Walls in Ising Systems Due to Random Impurities,
Phys. Rev. Lett. 54, 2708 (1985).

[73] M. Kardar and D. R. Nelson, Commensurate-Incommensu-
rate Transitions with Quenched Random Impurities, Phys.
Rev. Lett. 55, 1157 (1985).

[74] M. Kardar, Directed paths in random media, arXiv:cond-
mat/9411022.

[75] C.-S. Tian, S.-K. Cheung, and Z.-Q. Zhang, Local Diffusion
Theory for Localized Waves in Open Media, Phys. Rev.
Lett. 105, 263905 (2010).

[76] C. Tian, Hydrodynamic and field-theoretic approaches to
light localization in open media, Physica (Amsterdam) 49E,
124 (2013).

[77] Note that these arguments do not depend on the precise
details of the envelope wave functions (e.g., exponentially
decaying versus a power law), so long as the lifetime of the
resonant states is much less than the noninteracting level
spacing in the sample, justifying a perturbative treatment of
their coupling to the leads.

[78] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling Theory of Localization: Absence of
Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42,
673 (1979).

PHYSICAL REVIEW LETTERS 123, 110601 (2019)

110601-7

https://doi.org/10.1103/PhysRevB.97.165123
https://doi.org/10.1103/PhysRevB.97.165123
https://doi.org/10.1103/PhysRevLett.47.1546
https://doi.org/10.1088/0022-3719/14/6/003
https://doi.org/10.1088/1367-2630/16/1/015012
https://doi.org/10.1103/PhysRevB.64.064412
https://doi.org/10.1103/PhysRevB.69.075111
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1103/PhysRevA.76.022311
https://doi.org/10.1103/PhysRevA.99.022310
https://doi.org/10.1098/rspa.1992.0047
https://doi.org/10.1098/rspa.1992.0047
https://doi.org/10.1016/0378-4371(90)90056-X
https://doi.org/10.1103/PhysRevLett.84.4333
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.55.1157
https://doi.org/10.1103/PhysRevLett.55.1157
http://arXiv.org/abs/cond-mat/9411022
http://arXiv.org/abs/cond-mat/9411022
https://doi.org/10.1103/PhysRevLett.105.263905
https://doi.org/10.1103/PhysRevLett.105.263905
https://doi.org/10.1016/j.physe.2013.01.021
https://doi.org/10.1016/j.physe.2013.01.021
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673

