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Quantum coherence is a fundamental feature of quantum mechanics and an underlying requirement for
most quantum information tasks. In the resource theory of coherence, incoherent states are diagonal with
respect to a fixed orthonormal basis; i.e., they can be seen as arising from a von Neumann measurement.
Here, we introduce and study a generalization to a resource theory of coherence defined with respect to the
most general quantum measurements, i.e., to arbitrary positive-operator-valued measures (POVMs). We
establish POVM-based coherence measures and POVM-incoherent operations that coincide for the case of
von Neumann measurements with their counterparts in standard coherence theory. We provide a
semidefinite program that allows us to characterize interconversion properties of resource states and
exemplify our framework by means of the qubit trine POVM, for which we also show analytical results.
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Quantum resource theories (QRTs) [1–3] provide a
structured framework in which quantum properties such
as entanglement, coherence, and purity are described in a
quantitative way. Every QRT is based on the notions of free
states (which do not contain the resource) and free
operations (which cannot create the resource). Building
on these basic constituents, QRTs allow us to determine the
resource content in quantum states, the optimal distillation
of the resource, and the possibility of interconversion
between resource states via free operations.
In recent years, the resource theory of quantum coher-

ence has received much attention [4–7]. In the standard
resource theory of coherence, the free states or incoherent
states are states that are diagonal in a fixed orthonormal
basis of a d-dimensional Hilbert spaceH. Incoherent states
ρI can thus also be seen as arising from a von Neumann
measurement P ¼ fPig in this basis, i.e., ρI ¼

P
d
i PiσPi

for some state σ ∈ S, where S denotes the set of quantum
states onH, and the measurement operators Pi are mutually
orthogonal rank-one projectors that form a complete set,P

d
i Pi ¼ 1. Coherent states are those that are not of the

above form. This notion of coherence has been generalized
in two directions. In [8–10], a resource theory of super-
position was studied, where the requirement of orthogon-
ality of the basis was lifted. In [11], Åberg proposed a
framework that can be seen as the definition of coherence
with respect to a general projective measurement, where the
orthogonal measurement operators Pi may be of higher
rank. In this generalized resource theory of coherence, the
free states are block diagonal.
It is an important question whether the notion of cohe-

rence as an intrinsic quantum property of states can be
further extended and formulated with respect to the most
general quantum measurements, i.e., positive-operator-
valued measures (POVMs). In this Letter, we answer this

question in the affirmative by introducing a resource theory
of quantum state coherence based on arbitrary POVMs.
More precisely, we establish a family of POVM-based
resource theories of coherence, as each POVM leads to a
different resource theory. In the special case of rank-one
orthogonal projective measurements, our theory coincides
with standard coherence theory. Note that our approach is
distinct from the mentioned previous generalizations
[8–10] in terms of free states and operations. A motivation
for our work is the fact that POVMs are generally advanta-
geous compared to projective measurements, see [12] for a
survey. In addition, we show in [13] that coherence of a
state with respect to a POVM can be interpreted as the
cryptographic randomness generated by measuring the
POVM on the state. That is, the amount of POVM
coherence in a state is equal to the unpredictability of
measurement outcomes relative to an eavesdropper with
maximal information about the state, generalizing results
from [14].
For a POVM-based coherence theory, the first challenge

is to identify a meaningful notion of free, POVM-incoherent
states. This is achieved via the Naimark theorem [15,16],
which states that any POVM can be extended to a projective
measurement in a larger space. Our concept of POVM
coherence of states in S is linked to a generalized resource
theory of coherence from [11] in the extended (Naimark)
space, for which we denote the set of states as S0. POVM
coherence can be interpreted as the coherence resource that
is required to implement the POVM on a given state via the
canonical Naimark extension. The latter is realized by
coupling the state to a probe, performing a global unitary,
and measuring the probe. This is relevant, as POVMs are
usually implemented in this way in experiments [17–19]. If
one views the probe as a measurement apparatus, POVM-
based coherence is the bipartite coherence generated in the
global state by this process.
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Conceptually, our Letter describes a novel way to
construct resource theories. Quantum states and operations
from the system space are embedded into a larger space that
is equipped with a resource theory, providing a derivated
resource theory on the original space. For this reason, our
work does not follow the standard construction method for
a resource theory: Our starting point is the definition of a
POVM-based coherence measure, from which we construct
free states and operations. We then provide a semidefinite
program that characterizes all POVM-incoherent opera-
tions, making them accessible for efficient numerical
computation. Finally, we apply our framework to the
example of the qubit trine POVM, for which we study
the coherence measure and characterize all incoherent
unitaries.
In the following, we present our main results and their

interpretation. Technical details and proofs from every
section of the main text are provided in the corresponding
section of the Supplemental Material [20], which includes
Refs. [21–33].
POVM and Naimark extension.—A POVM onH with n

outcomes is a set E ¼ fEigni¼1 of positive semidefinite
operators Ei ≥ 0, called effects, which satisfy

P
n
i Ei ¼ 1.

The probability to obtain the ith outcome when measuring
ρ is given by piðρÞ ¼ tr½Eiρ�. We denote by fAig a set of
measurement operators of E, i.e., Ei ¼ A†

i Ai. Each measu-
rement operator Ai is only fixed up to a unitary Ui, as the
transformation Ai ↦ UiAi leaves Ei invariant. The ith
postmeasurement state for a given Ai is ρi ¼ ð1=piÞAiρA

†
i .

Let us remind the reader that, according to the Naimark
theorem [15,16], every POVM E ¼ fEigni¼1 on H, if
embedded in a larger Hilbert space, the Naimark space
H0 of dimension d0 ≥ d, can be extended to a projective
measurement P ¼ fPigni¼1 onH

0. The most general way to
embed the original Hilbert space H into H0 is via a direct
sum, requiring

tr½Eiρ� ¼ tr½Piðρ ⊕ 0Þ� ð1Þ

to hold for all states ρ in S, where⊕ denotes the orthogonal
direct sum, and 0 is the zero matrix of dimension d0 − d. We
call any projective measurement P that fulfills Eq. (1) a
Naimark extension of E.
The embedding into a larger-dimensional space can also

be performed via the so-called canonical Naimark exten-
sion [34,35]: one attaches an ancilla or probe, initially in a
fixed state j1ih1j, via a tensor product. We denote the map
that performs the embedding by E½ρ� ¼ ρ ⊗ j1ih1j and the
space of embedded states by SE ¼ E½S�. A suitable global
unitary V describes the interaction between system and
probe such that the resulting state is ρ0 ¼ Vðρ ⊗ j1ih1jÞV†.
A von Neumann measurement on the probe leads to the
same probabilities pi as the POVM if

tr½Eiρ� ¼ tr½ð1 ⊗ jiihijÞρ0� ¼ tr½Piðρ ⊗ j1ih1jÞ� ð2Þ

holds for all states ρ in S. Here we have included the
unitary V into the projective measurement, i.e., Pi ≔
V†ð1 ⊗ jiihijÞV. Thus, Pi has rank d. This type of
Naimark extension is not optimal in terms of smallest
additionally required dimension [36], but its structure
allows for a simpler derivation of general results and
directly describes the possibility to implement a POVM
in an experiment. Both described types of Naimark
extensions are not unique.
Resource theory of block coherence.—Åberg [11] intro-

duced general measures for the degree of superposition in a
mixed quantum state with respect to orthogonal decom-
positions of the underlying Hilbert space, thus pioneering
the resource theory of coherence. Here we translate his
work into the present-day language of resource theories and
refer to it as the resource theory of block coherence.
The set I of block-incoherent (or free) states ρBI arises

via a projective measurement P ¼ fPigni¼1 on the set of
quantum states S, namely [11],

ρBI ¼
X

i

PiσPi ¼ Δ½σ�; σ ∈ S; ð3Þ

where the rank of the orthogonal projectors Pi is arbitrary,
and we have defined the block-dephasing map Δ. In this
framework, coherence is not “visible” within a subspace
given by the range of Pi, but only across different
subspaces. If all Pi have rank one, the standard resource
theory of coherence is recovered. Note that here we have
intentionally chosen the same symbol Pi as in Eq. (2), as
we shortly identify the two.
We refer to the largest class of (free) operations that

cannot create block coherence as (maximally) block-
incoherent (MBI) operations. A channel ΛMBI on S is
element of this class if and only if it maps any block-
incoherent state to a block-incoherent state, i.e.,

ΛMBI½I � ⊆ I ; ð4Þ

or equivalently, ΛMBI ∘ Δ ¼ Δ ∘ ΛMBI ∘ Δ. In standard
coherence theory, this class is referred to as maximally
incoherent operations (MIO).
The amount of block coherence contained in a state ρ

with respect to a projective measurement P can be
quantified by suitable measures. We call a real-valued
positive function Cðρ;PÞ ≥ 0 a block-coherence measure if
and only if it fulfills the following: (i) Faithfulness:
Cðρ;PÞ ¼ 0 ⇔ ρ ∈ I . (ii) Monotonicity: CðΛMBI½ρ�;PÞ ≤
Cðρ;PÞ for all ΛMBI. (iii) Convexity: CðPipiρi;PÞ ≤P

ipiCðρi;PÞ for all fρig, pi ≥ 0,
P

ipi ¼ 1. Several
block-coherence measures were introduced in [11], and a
general class of measures can be derived from distances
that are contractive under quantum operations [20]. An
important example is the relative entropy of block coher-
ence, defined as
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Crelðρ;PÞ ¼ min
σ∈I

SðρkσÞ ¼ SðΔ½ρ�Þ − SðρÞ; ð5Þ

where SðρkσÞ ¼ tr½ρ log ρ − ρ log σ� denotes the quantum
relative entropy and SðρÞ ¼ −Sðρk1Þ is the von Neumann
entropy. In standard coherence theory, the relative entropy
of coherence has several important operational meanings
[5,14,37]; e.g., it quantifies the distillable coherence and
coherence cost under the class MIO [6].
POVM-based coherence measures.—The main idea of

our approach is to define the coherence of a state ρ with
respect to the POVM E via its canonical Naimark exten-
sion. This concept is visualized in Fig. 1.
Definition 1: POVM-based coherence measure.—Let

Cðρ0;PÞ be a unitarily invariant block-coherence measure
on S0. The POVM-based coherence measure Cðρ;EÞ for a
state ρ in S is defined as the block coherence of the
embedded state E½ρ� ¼ ρ ⊗ j1ih1jwith respect to a canoni-
cal Naimark extension P of the POVM E, namely,

Cðρ;EÞ ≔ CðE½ρ�;PÞ; ð6Þ

where the constraint in Eq. (2) has to hold. It is straightfor-
ward to generalize this definition to the most general
Naimark extension from Eq. (1).
The convexity of the underlying block-coherence mea-

sure directly implies that Cðρ;EÞ is convex in ρ. Here,
unitarily invariant means that Cðρ0;PÞ ¼ CðUρ0U†; UPU†Þ
holds for all unitaries U on H0. This property ensures that
Cðρ;EÞ is invariant under a change of measurement
operators Ai ↦ UiAi, with unitary Ui [20]. Note that the
right side of Eq. (6) should also remain invariant if we
employ a more general Naimark extension of E regarding
dimension and form. We call measures with this property
well defined.
In this Letter, we focus on the relative-entropy-based

measure for which one can straightforwardly show that it is

well defined [20,38]. See [13] for many further well-
defined POVM-coherence measures.
Lemma 1: Analytical form of a POVM-based coherence

measure.—The relative entropy of POVM-based coherence
Crelðρ;EÞ is convex and independent of the choice of
Naimark extension for its definition. It admits the following
form:

Crelðρ;EÞ ¼ H½fpiðρÞg� þ
X

i

piðρÞSðρiÞ − SðρÞ; ð7Þ

with piðρÞ ¼ tr½Eiρ�, ρi ¼ ð1=piÞAiρA
†
i , and the Shannon

entropy H½fpiðρÞg� ¼ −
P

ipi logpi. In the special case of
E being a von Neumann measurement, i.e., Ei ¼ jiihij,
Crelðρ;EÞ equals the standard relative entropy of co-
herence.
The independence property holds because the eigenval-

ues of Δ½E½ρ�� are the same for any two Naimark extensions
used to define Δ and because the von Neumann entropy
solely depends on the eigenvalues of its argument [20].
Minimal and maximal POVM-based coherence.—We

show in [20] that, for an n-outcome POVM E, the bounds
0 ≤ Crelðρ;EÞ ≤ log n hold. However, there exist POVMs
for which one or both of these bounds cannot be attained
for any quantum state. First, let us discuss maximal
coherence: the convexity of Crel implies that its maxima
are attained by the pure states that lead to the highest
entropy of measurement outcomes, see [39] for a partial
characterization.
Now, we address the lower bound. We can characterize

POVM-incoherent states (i.e., states with zero POVM
coherence) as follows.
Lemma 2: Characterization of POVM-incoherent

states.—Let E ¼ fEigni¼1 be a POVM and let Ēi denote
the projective part of Ei, i.e., the projector onto the
eigenvalue-one eigenspace of Ei. A state ρPI ∈ S is
POVM incoherent with respect to E if and only if

X

i

ĒiρPIĒi ¼ ρPI: ð8Þ

By employing the canonical Naimark extension, one can
show that ρ is POVM incoherent if and only if EiρEj ¼ 0
holds for all i ≠ j, generalizing the requirement of vanish-
ing off-diagonal elements for standard incoherent states.
From this, Lemma 2 can be obtained [20], which implies
that for particular POVMs the set of incoherent states
IPOVM is empty since no effect has a nonzero projective
part. This includes any informationally complete POVM
and the trine POVM, which we discuss in detail below. The
set IPOVM may be empty because we describe a derivated
resource theory, i.e., a part of an encompassing framework
in which free states exist. A resource theory where every
object contains some resource is meaningful, since different
objects can possess very different amounts of resource and
are thus of different usefulness. In the following paragraph,

FIG. 1. We introduce a resource theory of POVM-based
coherence by making use of the Naimark construction. Quantum
states ρ are embedded as E½ρ� ¼ ρ ⊗ j1ih1j to act on a higher-
dimensional Hilbert space (Naimark space). The POVM E is
extended to a projective measurement P on the Naimark space,
which defines a set of block-incoherent states I . The POVM-
coherence measure Cðρ;EÞ is the distance between E½ρ� and its
projection Δ½E½ρ�� onto block-incoherent states.

PHYSICAL REVIEW LETTERS 123, 110402 (2019)

110402-3



we introduce the set of POVM-incoherent operations that is
nonempty, as it is defined via the Naimark extension. The
generalization of IPOVM is the setM of minimally POVM-
coherent states that has similar properties as the standard
incoherent set: it is nonempty, convex, and closed under
POVM-incoherent operations. Interestingly, the maximally
mixed state ρ ¼ ð1=dÞ is not necessarily contained in
M [13].
POVM-incoherent operations.—The final main ingre-

dient of our resource theory are quantum operations that
cannot create POVM-based coherence, i.e., free operations.
We denote maps acting on the larger space S0 as Λ0, while
maps acting on the original system S are called Λ.
Definition 2: POVM-incoherent operations.—LetE be a

POVM and P any Naimark extension of it. Let Λ0 be a
completely positive trace-preserving map on S0 that sat-
isfies the following: (i) Block incoherent: Λ0 is block
incoherent (MBI) with respect to P, see Eq. (4).
(ii) Subspace preserving: Λ0½SE � ⊆ SE for the subset SE ⊆
S0 of embedded system states. We call the channel ΛMPI ≔
E−1 ∘ Λ0 ∘ E on S a (maximally) POVM-incoherent (MPI)
operation.
While this definition seems to be involved, it merely

formalizes the feature that any MPI operation can be
extended to an MBI map on a larger space. The second
requirement in Definition 2 is necessary so that the POVM-
incoherent channel only contains degrees of freedom of the
original space H.
Lemma 3: Operations from Definition 2 cannot increase

POVM-based coherence.—LetΛMPI be a POVM-incoherent
operation of the POVM E. Then, for any well-defined
POVM-based coherence measure Cðρ;EÞ it holds that

CðΛMPI½ρ�;EÞ ≤ Cðρ;EÞ: ð9Þ

For any measurement, we can characterize the set of
POVM-incoherent operations by a semidefinite program
(SDP), since these operations are defined solely by linear
conditions (i, ii, and trace preservation) and semidefinite
conditions (complete positivity).
Theorem 1: Characterization of POVM-incoherent op-

erations.—The set MPI of POVM-incoherent operations is
independent of the chosen Naimark extension and can be
characterized by a semidefinite feasibility problem (SDP).
In the special case of von Neumann measurements, MPI
operations are equivalent to MIO maps of the standard
coherence theory.
The independence property holds because, for every two

Naimark extensions of a POVM, any block-incoherent map
on the larger Naimark space can be identified with a block-
incoherent map on the smaller Naimark space that leads to
the same (local) POVM-incoherent map [20].
Regarding the interconversion of resource states in our

POVM-based coherence theory, we can employ the SDP
characterization of POVM-incoherent operationsΛMPI for a

POVM E to determine numerically the maximally achiev-
able fidelity Fmaxðρ; σÞ ¼ maxΛMPI

FðΛMPI½ρ�; σÞ between a
target state σ and ΛMPI½ρ�, see the Supplemental Material
[20]. The fidelity Fðρ; σÞ ¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
quantifies how

close two quantum states ρ, σ are.
Example: Qubit trine POVM.—As an example, we

analyze the case of the qubit trine POVM Etrine ¼
f2
3
jϕkihϕkjg3k¼1, with measurement directions jϕki ¼

1=
ffiffiffi
2

p ðj0i þ ωk−1j1iÞ, where ω ¼ expð2πi=3Þ. The corre-
sponding POVM-based coherence of pure states is illus-
trated in Fig. 2 (left). For the qubit trine POVM there are two
states with maximal POVM coherence Cmax

rel ¼ log 3,
namely, jΨmaxi ∈ fj0i; j1ig. The set M of states with
minimal POVM-based coherenceCmin

rel ¼ log 3 − 1 contains
solely the maximally mixed state: M ¼ f1=2g.
Regarding POVM-incoherent (free) operations, the free

unitary operations can be fully characterized: Up to a
global phase, there exist exactly six POVM-incoherent
unitaries Utrine

i . They correspond to the rotations on the
Bloch sphere that map the trine star to itself, i.e., the
symmetry group of the equilateral triangle. In standard
coherence theory, the measurement map ρ ↦ Δ½ρ� is
incoherent. However, for a general POVM the measure-
ment map ρ ↦

P
i

ffiffiffiffiffi
Ei

p
ρ

ffiffiffiffiffi
Ei

p
is not necessarily POVM

incoherent with respect to E as one can find POVMs for
which the map increases the coherence of a state [13].
Notably, for the trine POVM Etrine, the SDP from
Theorem 1 verifies that the measurement map is indeed
POVM incoherent. As to conversion properties, every qubit

FIG. 2. POVM-based coherence theory for qubit states with
respect to the trine POVM Etrine in the Bloch sphere representa-
tion. Gray lines indicate the three measurement directions. (Left)
POVM-based coherence of pure qubits (surface of sphere). The
states j0i and j1i have maximal coherence of C ¼ log 3. The
Bloch vectors of the three states with the lowest pure-state
coherence C ¼ 1 are antipodal to the measurement directions.
(Right) Maximally achievable conversion fidelity Fmaxðρ; σÞ ¼
maxΛMPI

FðΛMPI½ρ�; σÞ between a pure initial state ρ (red dot)
subjected to POVM-incoherent operations ΛMPI and a pure target
state σ on the sphere surface. Here, ρ ¼ jψihψ j with
jψi ¼ cosðπ=8Þj0i þ sinðπ=8Þj1i. Only states in the orbit of
jψi under the six POVM-incoherent unitaries can be reached
with unit fidelity, as depicted by the yellow spots.
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state ρ can be obtained deterministically by applying some
POVM-incoherent operation to a maximally coherent state
jΨmaxi ∈ fj0i; j1ig. By applying the SDP, we have numeri-
cal evidence that given a state jψi ≠ jΨmaxi, the only pure
states that can be obtained from it with certainty via free
operations are in the orbit fUtrine

i jψig under the trine-
incoherent unitaries. An example for the conversion fidelity
when starting from an initial state with less than maximal
resource is shown in Fig. 2 (right).
Conclusion and Outlook.—We have introduced a family

of resource theories that quantify the coherence of a
quantum state with respect to any given POVM. These
resource theories are derived from the resource theory of
block coherence [11] via the Naimark extension on a
higher-dimensional space. The restriction to the embedded
original space led to the characterization of free states,
free operations, and resulting conversion properties within
the POVM-based resource theories. For the case of von
Neumann measurements, POVM-coherence measures and
POVM-incoherent operations reduce to their counterparts
in standard coherence theory.
Our approach has identified the coherence resource that

is necessary to implement experimentally a general meas-
urement on a given state via the Naimark extension. Also
note other works that elucidate the role of quantum
resources in the Naimark extension [40,41].
Several open questions should be addressed in the future.

First, it is not clear whether a characterization of POVM-
incoherent operations without reference to the Naimark
space is possible. A necessary condition is given by
ΛMPI½M� ⊆ M, where M is the set of states with minimal
POVM-based coherence. For projective measurements, this
property is also sufficient as M ¼ I . However, in general,
this property is not sufficient: for the trine POVM,
M ¼ f1=2g; thus the condition is equivalent to unitality,
but there are unital maps that can increase the POVM-based
coherence [20].
We expect that further consistent POVM-coherence

measures can be introduced which have operational inter-
pretations that generalize the results from standard coher-
ence theory [42–47]. Finally, one can introduce the
subclass of selective POVM-incoherent operations and
study the corresponding conversion properties [13].

We acknowledge financial support from the
German Federal Ministry of Education and Research
(BMBF). F. B. gratefully acknowledges support from
Evangelisches Studienwerk Villigst and from
Strategischer Forschungsfonds of the Heinrich Heine
University Düsseldorf.

*felix.bischof@hhu.de
[1] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett. 115,

070503 (2015).

[2] Z.-W. Liu, X. Hu, and S. Lloyd, Phys. Rev. Lett. 118,
060502 (2017).

[3] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001
(2019).

[4] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev.
Lett. 113, 140401 (2014).

[5] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404
(2016).

[6] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys.
89, 041003 (2017).

[7] A. Streltsov, H. Kampermann, S. Wölk, M. Gessner, and D.
Bruß, New J. Phys. 20, 053058 (2018).

[8] T. Theurer, N. Killoran, D. Egloff, and M. B. Plenio, Phys.
Rev. Lett. 119, 230401 (2017).

[9] K. C. Tan, T. Volkoff, H. Kwon, and H. Jeong, Phys. Rev.
Lett. 119, 190405 (2017).

[10] S. Das, C. Mukhopadhyay, S. S. Roy, S. Bhattacharya, A.
Sen De, and U. Sen, arXiv:1705.04343.

[11] J. Åberg, arXiv:quant-ph/0612146.
[12] M. Oszmaniec, L. Guerini, P. Wittek, and A. Acín, Phys.

Rev. Lett. 119, 190501 (2017).
[13] F. Bischof, H. Kampermann, and D. Bruß, arXiv:

1907.08574.
[14] X. Yuan, H. Zhou, Z. Cao, and X. Ma, Phys. Rev. A 92,

022124 (2015).
[15] A. Peres, Quantum Theory: Concepts and Methods, Vol. 57

(Springer Science & Business Media, New York, 2006).
[16] T. Decker, D. Janzing, and M. Rötteler, J. Math. Phys.

(N.Y.) 46, 012104 (2005).
[17] G. N. M. Tabia, Phys. Rev. A 86, 062107 (2012).
[18] F. Becerra, J. Fan, and A. Migdall, Nat. Commun. 4, 2028

(2013).
[19] M. Schiavon, G. Vallone, and P. Villoresi, Sci. Rep. 6,

30089 (2016).
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.110402 for further
details, proofs and examples that complement the main text.

[21] V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
[22] J. Matera, D. Egloff, N. Killoran, and M. B. Plenio,

Quantum Sci. Technol. 1, 01LT01 (2016).
[23] E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso,

and M. Lewenstein, Phys. Rev. Lett. 116, 070402 (2016).
[24] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[25] J. C. A. Barata and M. S. Hussein, Braz. J. Phys. 42, 146
(2012).

[26] F. Bischof, H. Kampermann, and D. Bruß, Phys. Rev. A 95,
062305 (2017).

[27] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, England, 2004).

[28] N. J. Higham, C. Mehl, and F. Tisseur, SIAM J. Matrix
Anal. Appl. 31, 2163 (2010).

[29] T. F. Havel, J. Math. Phys. (N.Y.) 44, 534 (2003).
[30] C. J. Wood, J. D. Biamonte, and D. G. Cory, Quantum Inf.

Comput. 15, 0579 (2015).
[31] M. Piani, Phys. Rev. Lett. 117, 080401 (2016).
[32] J. Watrous, arXiv:1207.5726.
[33] Z. Bai and S. Du, Quantum Inf. Comput. 15, 1355 (2015).
[34] M.M. Wilde, Proc. R. Soc. A 469, 0259 (2013).

PHYSICAL REVIEW LETTERS 123, 110402 (2019)

110402-5

https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.118.060502
https://doi.org/10.1103/PhysRevLett.118.060502
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1088/1367-2630/aac484
https://doi.org/10.1103/PhysRevLett.119.230401
https://doi.org/10.1103/PhysRevLett.119.230401
https://doi.org/10.1103/PhysRevLett.119.190405
https://doi.org/10.1103/PhysRevLett.119.190405
http://arXiv.org/abs/1705.04343
http://arXiv.org/abs/quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.119.190501
https://doi.org/10.1103/PhysRevLett.119.190501
http://arXiv.org/abs/1907.08574
http://arXiv.org/abs/1907.08574
https://doi.org/10.1103/PhysRevA.92.022124
https://doi.org/10.1103/PhysRevA.92.022124
https://doi.org/10.1063/1.1827924
https://doi.org/10.1063/1.1827924
https://doi.org/10.1103/PhysRevA.86.062107
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/srep30089
https://doi.org/10.1038/srep30089
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.110402
https://doi.org/10.1103/PhysRevA.57.1619
https://doi.org/10.1088/2058-9565/1/1/01LT01
https://doi.org/10.1103/PhysRevLett.116.070402
https://doi.org/10.1007/s13538-011-0052-z
https://doi.org/10.1007/s13538-011-0052-z
https://doi.org/10.1103/PhysRevA.95.062305
https://doi.org/10.1103/PhysRevA.95.062305
https://doi.org/10.1137/090765018
https://doi.org/10.1137/090765018
https://doi.org/10.1063/1.1518555
https://doi.org/10.1103/PhysRevLett.117.080401
http://arXiv.org/abs/1207.5726
https://doi.org/10.1098/rspa.2013.0259


[35] C. Sparaciari and M. G. A. Paris, Phys. Rev. A 87, 012106
(2013).

[36] P.-X. Chen, J. A. Bergou, S.-Y. Zhu, and G.-C. Guo, Phys.
Rev. A 76, 060303(R) (2007).

[37] X. Yuan, Q. Zhao, D. Girolami, and X. Ma, arXiv:
1605.07818.

[38] A. E. Rastegin, J. Phys. A 51, 414011 (2018).
[39] A. Szymusiak, arXiv:1701.01139.
[40] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

106, 160401 (2011).
[41] R. Jozsa, M. Koashi, N. Linden, S. Popescu, S. Presnell, D.

Shepherd, and A. Winter, Quantum Inf. Comput. 3, 405
(2003).

[42] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N.
Johnston, and G. Adesso, Phys. Rev. Lett. 116, 150502
(2016).

[43] T. Biswas, M. G. Díaz, and A. Winter, Proc. R. Soc. A 473,
20170170 (2017).

[44] K. Bu, U. Singh, S.-M. Fei, A. K. Pati, and J. Wu, Phys. Rev.
Lett. 119, 150405 (2017).

[45] C. Xiong and J. Wu, J. Phys. A 51, 414005 (2018).
[46] K. Korzekwa, S. Czachórski, Z. Puchała, and K.

Życzkowski, New J. Phys. 20, 043028 (2018).
[47] Y. Liu, Q. Zhao, and X. Yuan, J. Phys. A 51, 414018

(2018).

PHYSICAL REVIEW LETTERS 123, 110402 (2019)

110402-6

https://doi.org/10.1103/PhysRevA.87.012106
https://doi.org/10.1103/PhysRevA.87.012106
https://doi.org/10.1103/PhysRevA.76.060303
https://doi.org/10.1103/PhysRevA.76.060303
http://arXiv.org/abs/1605.07818
http://arXiv.org/abs/1605.07818
https://doi.org/10.1088/1751-8121/aab348
http://arXiv.org/abs/1701.01139
https://doi.org/10.1103/PhysRevLett.106.160401
https://doi.org/10.1103/PhysRevLett.106.160401
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1098/rspa.2017.0170
https://doi.org/10.1098/rspa.2017.0170
https://doi.org/10.1103/PhysRevLett.119.150405
https://doi.org/10.1103/PhysRevLett.119.150405
https://doi.org/10.1088/1751-8121/aac979
https://doi.org/10.1088/1367-2630/aaaff3
https://doi.org/10.1088/1751-8121/aabca2
https://doi.org/10.1088/1751-8121/aabca2

