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Macromolecules contain molecular units as the coding information for their correlated structures in
physical dimensions. The relationship between these two features is governed by the interaction energies of
the involved molecular units and their encoded sequences. We present a neural network algorithm that
treats molecular units themselves as neural networks, which has the flexibility to allow each unit to respond
to its own environment and to influence others in the system. Through a deep neural network and a self-
consistent procedure, molecular units in the network establish a strong correlation to produce the desirable
features in the physical world. The proposed framework is applied to the HP model. Both the forward
problem of predicting folded structures from given sequences and the inverse problem of predicting
required sequences for a given structure are examined.
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Introduction.—Many structural-prediction problems in
polymer physics and biological physics start with the
primary coding of a variety of basic molecular units at a
molecular level. In block copolymers, the coding could be
blocks of monomers connected together where each block
is of a particular entity; in protein folding, the coding could
be the arrangement of amino acids along a linear backbone.
These are either artificially synthesized or naturally made
linear “texts” that have, at the first glance, no information
on their three-dimensional structures. Through interactive
potential energies between the basic molecular units (with
the possible solvent involvement) and under appropriate
physical conditions, these linear or linearly branched chains
self-assemble (or “fold”) into well-defined structures in
physical space.

Theoretically, going from a sequence text to its three-
dimensional structure, one employs procedures established
according to the basic principles of statistical mechanics,
taking, for example, Monte Carlo simulations [1], molecular
dynamics simulations [2], or self-consistent field theory
calculations [3]. Experimentally, one just measures the
resultant structures with the understanding that some physi-
cal processes have taken place in between the sequence
information and the final structures, without knowing the
abstract concepts such as the Hamiltonian or the Boltzmann
distribution of the system. Computationally, if all the
physical processes can be embedded in a well-constructed
neutral network (NN), one directly establishes a relationship
between the final structure and the starting sequence text,
letting the network to handel everything in the middle. The
strongly correlated neural-network (SCN) introduced here is

0031-9007/19/123(10)/108002(5)

108002-1

designed for such a purpose, which treats physical feature 1
as input (e.g., sequence information) and feature 2 as output
(e.g., spatial arrangement of molecules). It can also be used
for inverse design by assigning the resultant structures as
feature 1 and asking for the original sequence texts as feature
2 (see Fig. 1).

Using NNs as a computational tool to perform dimen-
sional reduction for use in condensed matter is now
common [4,5]. When position coordinates in an off-lattice
model or the location and value of spins in an Ising model
are given, the multidimensional information can be reduced
to a simple few, for identification of the main physical
characteristics such as order parameters of different phases,
with the implementation of relatively elementary NN
models [6—10]. The use of NNs has also inspired unconven-
tional ways of calculating the partition function [11-13],
conducting Monte Carlo simulations [14—17], and solving
partial differential equations [18-20].

Instead of dimension reduction, our task here is to
establish the ability to describe both features 1 and 2 in
much molecular detail. The SCN contains two basic
elements. The first is to associate the molecular-level
information in feature 1 (the input) with an identity layer
of NNs, shown in Fig. 1. This expanded concept of
assigning an NN to a physical entity allows for the maximal
flexibility of such an entity to react in response to a
complex physical environment. The response from each
identity NN is then sent to a convolutional neural network
(CNN) for further crossing analysis. The second is a self-
consistent loop that collects the information from the CNN
and feeds back to the identity layer. This establish a strong
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FIG. 1. (a) Sketch of the strongly correlated network (SCN) and
(b) the physical example used for demonstration (HP model).
SCN represents entities in physical feature 1 by neural networks
and sends their output to a deep neural network for processing.
Two output channels are designed: one for feeding back to the
input of the identity layer and the other for the calculated physical
feature 2. In the folding example of the HP model, feature 1 is the
encoding sequence and feature 2 is the coordinates of the folded
structure. In inverse design, feature 1 is the desired fold and
feature 2 is the predicted sequence that in turn produces the
fold. The network mimics the physical process that connects
features 1 and 2.

Feature-1

correlation between feature 1 in the information space by
itself. After the self-consistency is achieved, feature 2 is
then extracted.

Any NN applications of a physical problem deal with
two categories of data. The physical data is used to
represent the physical properties of a particular problem,
not different from the measurements taken from a real
laboratory. The network parameters are used to build NNs
through function calls, normally invisible to the users. Once
the feature 2 output data is fitted to a real physical data by
adjusting network parameters, then the SCN is thought of
as trained.

In order to show the power of SCN, we take a well-
known model in statistical physics, the HP model [21], as
the vehicle to deliver the concepts. The sequence of a
theoretical protein is encoded in a linear chain with two
types of molecular units, H for hydrophobic and P for
hydrophilic [Fig. 1(b)]. Some proteinlike sequences fold
into unique native structures. The folding problem asks for
prediction of the native structure (feature 2), when a
sequence (feature 1) is given. The inverse design problem

can also be formulated: can we predict the encoding
sequences (feature 2) that fold into a given native structure
(feature 1)? The 19mer HP model used here is complicated
enough to contain sufficiently big data, and yet is simple
enough to have all structural properties exactly determined
previously.

SCN.—Our network design is conceptually shown in
Fig. 1, containing the following main components. The first
is an identity layer. For example, molecular units are
connected sequentially in the HP model to form a one-
dimensional text and there are only two physical entities, H
and P. Each entity is represented by a feed-forward-neural-
network type. From one H to another H, the network
parameters are identical to represent the same entity, but the
input and output vectors can be different. Hence, each H
network individually takes its unique environment through
the input and responds to it by producing its own behavior
through the output. One could view the network repre-
sentation of a physical entity as the numerical realization of
a mathematical operator; by reacting to the various inputs, it
projects its own properties onto different outputs. All P
networks have the same properties. The concept is vastly
different from previous representations of these molecular
units by fixed numbers in one hot encoding [22] (for
example, O for H and 1 for P) or by vectors with limited
adaptability [23-25].

To enable a mechanism for strong correlations between
units in feature 1, the outputs from the identity layer are
directly sent to the input of a CNN, where all these outputs
are physically correlated through nonlinear numerical
mixing. The CNN output is divided into two channels, a
self-consistent channel (SCC) and a result channel (RC).
The SCC is a vector output, with the same vector dimension
as the total dimension of the input to the identity layer.
During the calculation, the self-consistency is ensured by
looping the information from the SCC back to the input of
the identity layer until self-convergence. Making a math-
ematical comparison, we can denote the input to the
identity layer by a vector v and the combined effects from
identity layer and CNN, sent to the SCC, by a vector
function F(v); then the self-consistent loop seeks the
convergence to a fixed-point solution v = F(v). Once this
is established, the molecular units are strongly correlated to
each other in a large network space.

The convergence, of course, depends on the network
parameters in both identity layer and CNN. The RC gives a
set of property data of the SCN after the self-consistent
loops. In supervised training, this set of data is then forced
to follow the known physical data of feature 2; through
minimizing a cost function, the network parameters are
adjusted to yield the optimal performance. The SCN is then
considered trained and ready for making predictions.

Structural prediction in HP model.—To demonstrate the
usage of SCN, we consider the folding of 19mer HP chains
into two-dimensional (2D) structures on a square lattice
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[3,26-28]. Feature 1 is the serial encoding of 19 monomers
where each monomer can be an H or P. A monomer is
allowed to occupy an unoccupied lattice site and double
occupancy is disallowed. An H-H nearest-neighbor contact
reduces the total free energy of the system by ¢ and no other
interactions are assumed. This effectively pushes the H
units inside a cluster. A properly designed sequence of HP
protein has a uniquely folded 2D native structure. This
rather essential model is selected here because all possible
sequences have been enumerated and the exact solutions
are known [29-31]; in this way we can benchmark SCN’s
performance. In total 13454 different sequences were
found to have unique native states, whose folded coor-
dinates are exactly known, forming our feature 2 [32].
These 13 454 HP sequences and their corresponding native
states are randomly divided into two groups: 11454
samples were used for training and the remaining 2000
samples form an independent dataset to test the accuracy of
the trained SCN.

Here are a few technical details. The identity layer
contains L = 19 feed-forward networks of two entities,
H and P, each having one hidden layer of 50 neurons.
These NNs, [ =1,2,3,..., L, represent the L monomers
along the backbone of a specifically sequenced chain. The
input into and output from each identity network are eight
dimensional vectors. The L x 8 output nodes are used as
the input to the CNN, which contains 2 convolutional
layers and several fully connected layers. The output from
CNN are two channels, SCC and RC. The SCC also
contains L x 8 output nodes to be directly connected to the
input of the identity layer. In practice, from a random
initialization, 10 self-consistency loops are taken before the
RC is used. The RC is an (L — 2) x 3 matrix to specify the
coordinates of all monomers starting from / = 3. The group
of 3 numbers v;;, j=1, 2, 3, respectively, yield the
probabilities of the three folding directions (left, forward,
or right) on a 2D lattice that the /th monomer takes from
the (I — 1)th, and depend on the network parameters. In
supervised training, the cross-entropy cost function is
minimized in multiple steps with respect to all network
parameters in the identity layer and CNN,

S:—Zv}ﬁjlnyl,j, (1)

where 17 ; is the target value specified by the samples taken

from the training dataset. An epoch is a computational step
when the entire training dataset is used once, on aver-
age [22].

As the network is trained epoch by epoch, we monitor
the SCN performance by feeding the sequence data from
the independent test dataset and comparing the coordinate
outputs with the known results. An accuracy A is defined as
the percentage of the 2000 molecular-coordinate datasets
that are exactly reproduced. The black curve in Fig. 2
indicates that, by the end of supervised training, nearly 80%
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FIG. 2. Accuracy of SCN to produce the correct native
structures in the independent test data of the 19mer HP model,
as a function of the supervised-training epoch (solid black curve).
Other deep NNs, such as vector (VEC), scalar (SCL), and fully
connected (FNN) models have prediction accuracies represented
by the solid gray, red, and blue curves. The efficiencies of the
supervised training are monitored by the dashed black, gray, red,
and blue curves, representing the accuracies measured on the
training dataset itself, for SCN, VEC, SCL and FNN, respec-
tively. [33].

of the native structures in the test dataset can be predicted
by SCN.

The efficiencies of using other deep NNs of a similar
network size are compared here. The state-of-the-art fold-
ing NN uses vector (VEC) representation in the identity
layer [36,37], instead of the network representation pro-
posed in Fig. 1. A typical entity (e.g., H) is represented by a
vector, whose (e.g., 8) elements are free network param-
eters determined by training. In a scalar model (SCL), such
an identity is represented by a static scalar (e.g., 0 for H and
1 for P); a SCL is essentially a CNN. A fully connected
deep NN (FNN) is also examined. No feeding back loop to
reinforce the environment-identity correlation is designed
in the conventional VEC, SCL, and CNN [33]. We used the
same HP model and partitioning of the training and testing
datasets to train these models. The gray, red, and blue
curves in Fig. 2 show that these deep NNs underperform
SCN by a significant margin, measured by A. The only
drawback of SCN is that depending on the self-consistency
loops that it takes, the real computational time can be a few
times slower than VEC; this can be tolerated in view of the
much better accuracy.

One-to-many prediction and inverse design.—Shown in
Fig. 1, the SCC feeds to the identity layer with the
collective environment information. When a calculation
starts, no such information exits yet and a random envi-
ronment parametrization is assumed; as the self-consistent
loop proceeds, it is assumed to converge to a fixed point.
This opens the door for exploiting another important

108002-3



PHYSICAL REVIEW LETTERS 123, 108002 (2019)

property of SCN: under the same set of appropriately-
selected network parameters and depending on the initial
random environment parameters, SCN has a built-in
mechanism to converge to multiple fixed points through
the self-consistent loops; that is, with the same physical
feature 1, it could make multiple predictions on feature 2,
which is the ability that VEC lacks.

This is particularly useful in solving the inverse-design
problem. Given originally desired feature 2, what prediction
can we make to design feature 1 in order to make feature 2
happening. Now reversing the roles of features 1 and 2, the
SCN can be readily used for supervised training to answer
this question, however, with one caveat. There could be many
selections of the original feature 1 that give rise to the same
feature 2. For example, in the 19mer HP model, it is well
documented that on average g ~ 10 sequences, sometimes as
many as g = 64, fold into a single, uniquely identifiable
native structure, where g is the degrees of degeneracy. Once
the roles are reversed, the predictive network must have the
ability to predict different sequences (now feature 2), given
the same native structure (now feature 1).

Technically, the identity layer contains a chain of (L — 2)
NNs of three entities, representing the coordinates of a
native structure. The three entities are simply “left,”
“forward,” and “right,” indicating how the /th monomer
turns in a 2D space from the / — I monomer by taking a
configurational step. For feature 2, the output from CNN is
a L x 2 matrix v; ; where the two output nodes for each /
predict the probability that the /th monomer is H (j = 0) or
P (j = 1). The same cross entropy, Eq. (1), is used in the
supervising training by taking the training dataset. There
are 1345 folded structures in the 19mer dataset, which are
divided into two different sets. The first 1145 folded
structures (from 12482 sequences) are treated as the
training dataset and the second 200 folded structures (from
972 sequences) the test dataset.
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FIG. 3.

Once the SCN learns through the training dataset by
supervised training, the network is ready for making inverse
predictions. To produce a sequence for a specifically
desirable structure, we initialize the SCN by M sets of
random environmental inputs (i.e., M prediction events) to
encourage the network to converge to different fixed points
(hence to produce the degenerated sequences). After all
folded structures in the test dataset are considered, two
measurements are taken to benchmark the success of the
prediction. Designability D is the percentage of the folded
states in the test set that have at least one sequence
accurately predicted. Recoverability R is the ratio between
the number of all correctly predicted sequences and the total
numbers of different sequences (i.e., 972) on the test set. Of
course, both D and R are functions of M, as multiple
prediction events are needed to produce different sequences
[see Fig. 3(a)].

Among the test dataset of the folded structures, we can
further categorize them by the degrees of degeneracy g. The
rotated labels in Fig. 3(b) indicate the fraction of the folded
structures in the dataset that have a particular g. In general,
as more prediction events are taken (M progresses), more
known structures are recovered at a given g.

Summary.—This work proposes to represent the classical
version of a physical entity by a neural network for use in
artificial intelligence. This accommodates a computational
mechanism to embed physical interactions with other
molecular units in a neural-network form, influenced by
other molecules through input and responding through
output. Incorporating a further deep neural network, we
also propose to establish a strongly correlated network
system by a self-consistent procedure, to approximate the
entire physical system where the specified molecular units
correlate themselves to form definitive structures in physi-
cal space. We establish a network framework that has the
ability to capture the strong structural correlations at the
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(a) Designability D and recoverability R of the trained SCN in making inverse-design predictions on the independent test

dataset and (b) recoverability R further categorized by the degrees of degeneracy ¢ [33]. These measures are plotted as functions of M,
the number of designing trials made on the trained SCN. In plot (b), the six colors on the bar graph represent M = 50, 100, 200, 500,
1000, and 2000, from bottom to top, respectively. The rotated labels associated with vertical bars in (b) indicate the fraction of structures

in the testing dataset that have the corresponding g.
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molecular level, resulted from laws of physics which are
unseen by the network, through setting up network para-
meters by supervised learning.

We demonstrate the usage of the network by supervising
it to solve two physical problems related to the folding of
“theoretical proteins” known as the HP model. In the
forward problem, the network learns how to predict the
structures of a folded protein in physical space from given
sequence information, with no additional interaction poten-
tial energies specified. In the inverse problem, the network
is asked to prescribe a set of sequence information, on the
basis of the molecular coordinates of a folded structure
without knowing the folding kinetics.

Depending on the physical system to be modeled, the
self-consistent loop can converge to multiple fixed-point
solutions. This allows for many-to-one, one-to-many (both
demonstrated here), and many-to-many predictions (not
demonstrated) at the molecular level, making solving
degenerate states possible [38,39].
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