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This Letter sets a road map towards an experimental realization of strong coupling between free
electrons and photons and analytically explores entanglement phenomena that emerge in this regime.
The proposed model unifies the strong-coupling predictions with known electron-photon interactions.
Additionally, this Letter predicts a non-Columbic entanglement between freely propagating electrons.
Since strong coupling can map entanglements between photon pairs onto photon-electron pairs, it may
harness electron beams for quantum communication, thus far exclusive to photons.
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Entanglement between the states of propagating quan-
tum entities and its violation of local realism [1–3] acquires
significant technological importance for quantum technol-
ogies, such as quantum computation and quantum key
distribution [4]. Polarization of photon pairs, expressed as
Bell states, allow for the transport of quantum entanglement
over ever-growing distances, under the sea [5] and in outer
space [6]. The rich set of properties of matter-wave beams
may offer new opportunities for quantum communication
and computation. For example, fundamental particles such
as electrons are decoupled from free-space radiation, lack
an internal structure to decohere into, and their short
wavelength may be used to mitigate beam divergence over
long distances. Currently, however, the quantum control of
electron beams is at its infancy.
Two important phenomena address the energy exchange

of light and electron beams: photoinduced near-field
electron microscopy (PINEM) and electron-energy loss
spectroscopy (EELS). In PINEM [7], a strong (and hence
classical) laser field accelerates or decelerates electrons in
a beam. This concept allows for optical control over the
electron quantum wave function [8–11], culminating in the
prediction [8] and demonstration [12–14] of attosecond-
scale electron pulses. Similar effects, such as electron-
energy gain spectroscopy [15,16], and effects of the light’s
ponderomotive energy, such as the Kapitza-Dirac effect
[17] and electron-phase retarders [18], are also well
described by classical laser fields. In the abovementioned
effects, adding or removing a photon from the laser field
makes no difference, since the electron-photon coupling is
extremely weak.
In EELS, the coupling can be increased by using metallic

nanostructures. The large polarizability and plasmonic
resonances [19] allow for detectable signals, while the
nanometric features compensate for the momentum mis-
match (see detailed reviews by García de Abajo [20] and
Talebi [21] and references within). Such systems were
investigated using rings [22], spheres [20], cubes [23,24],

and rods [25,26] geometry, as well as for stacked particles
[27], ordered or disordered structures [28–30], and also
symmetric [31,32] and symmetry-broken systems exhibi-
ting non-Hermitian phenomena [33]. However, rapid
decoherence eliminates entanglement features [34] between
the electrons and any excited plasmons, stemming from
radiative damping [35], intrinsic dissipation [36] absorption,
and sensitivity to defects. Alternatively, transparent dielec-
trics have no theoretical bound for the excitation probability
[28]. Optical excitations in such dielectrics can be readily
injected, collected, or manipulated, but unfortunately, their
coupling to electron beams is weak.
This Letter proposes that the phase matching of swift

electrons to photons confined in a waveguide-based dielec-
tric cavity can increase the interaction towards the strong-
coupling regime and theoretically investigates emergent
entanglement phenomena. The phase-matching bandwidth
can isolate even a single cavity mode, allowing for a single
channel of energy exchange between matter and radiation.
An analytical entanglement model is developed for the
electron-cavity interaction, which applies for any coupling
regime, weak or strong. To exemplify novel phenomena
arising in the strong-coupling regime, this Letter focuses
on two scenarios: First, the entanglement between cavity
photons and a traversing electron is investigated, and
compared to PINEM and EELS in the limit of weak
coupling. Through this comparison, I find that, for
PINEM driven with a coherent state jαi, the Rabi parameter
is given by g ¼ gQuα, where gQu is the coupling strength.
As a second example, the cavity capability to mediate non-
Coulombic entanglement between two distant electrons
within a beam is explored. Finally, the strength and spectral
properties of the coupling are evaluated quantitatively,
for the case of a racetrack whispering-gallery mode cavity
based on a single-mode waveguide.
The proposed approach combines two essential con-

cepts: (i) modal confinement allows for a meaningful
electric field per photon, and (ii) energy exchanges
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between a light field and a traversing electron is increased
by phase matching them over an extended length. Thus, the
effect of even a single photon can build up coherently along
the propagation and approach strong coupling. Those can
be realized by using a whispering-gallery mode (WGM)
cavity with a racetrack geometry (see Fig. 1). An electron
beam passing parallel to a straight section of the cavity,
which is a single-mode waveguide, excites the mode via its
evanescent tail in the vacuum. The conservation of both
energy and momentum (i.e., phase matching) is fulfilled
only for a specific photon energy, for which the electron
travels at the mode’s phase velocity. The interaction
spectral bandwidth can be very narrow due to dispersion
in the waveguide. In the example of Fig. 1(b), a silicon-
nitride (Si3N4) cavity is optimized to couple electron beams
accelerated to 200 keV with photons having vacuum
wavelength near 1.064 μm (ℏω0 ¼ 1.166 eV). The cou-
pling bandwidth narrows down to only 0.011 eV after a
propagation of 100 μm. More details are discussed later on.
The analytical model relies on the narrow spectral

response of the proposed system. Only photons having
angular frequency ω0 are phase matched with the relativ-
istic electron beam. The narrow bandwidth suppresses
finite electron wave packet [37,38] effects. The quantum
state of these two systems can be described as energy-
ladder systems with ℏω0 spacing between the levels: The
photon Fock states in the cavity are represented by jni, a
semi-infinite ladder with n ≥ 0. The electron states jEki,
with Ek ¼ E0 þ kℏω0, represent gain (k > 0) and loss
(k < 0) with respect to the “zero-loss energy” E0. ℏ is
the reduced Planck’s constant. Thus, a general state of such
electron-photon system can be written as

jψi ¼
X∞
n¼0

X∞
k¼−∞

cn;kjEk; ni: ð1Þ

The relation between the state of the system before and
after the interaction can be described by the scatteringmatrix
Ŝ as jψ finali ¼ Ŝjψ initiali. Neglecting electron dispersion
effects allows one to write Ŝ as an operator that exchanges
energy between the electrons and the photons,

Ŝ ¼ Dðb̂gQuÞ ¼ egQub̂â
†−g�Qub̂†â. ð2Þ

â and â† are the noncommuting photon-ladder operators,
and b̂ and b̂† are the commuting electron-energy-ladder
operators. The commutation ½b̂; b̂†� ¼ 0 results in an algebra
similar to scalars, so Ŝ behaves as the displacement operator
DðgQuÞ [39]. A comprehensive treatment of b̂, b̂† and
electron dispersion effects can be found in Secs. S.4
and S.1 of the Supplemental Material [40], respectively.
Although gQu ≥ 1 is the obvious definition for the strong-
coupling regime, some strong-coupling phenomena, e.g.,
energy transfers of multiple quanta, emerge already for
moderate couplings.
The interaction of a relativistic electron with an empty

cavity is an important and instructive case to consider [see
Fig. 2(a)]. The initial state of the electron-photon system
is a pure state, with the electron at the zero-loss energy and
no photons

jψ ii ¼ jE0; 0i: ð3Þ

Since the interaction is a displacement operator, the state
after the interaction jψfi is a coherent state [43], as for
plasmons [44]. The conservation of energy entangles
each optical Fock state to an equal electron-energy loss
Ek ¼ E−n, therefore

jψfi ¼
X∞
n≥0

e−jgQuj2=2
gnQuffiffiffiffiffi
n!

p jE−n; ni: ð4Þ

One can consider Eq. (4) as the multilevel electron-
photon equivalent of a Bell pair, jψfi ¼ ðc0jE0; 0i þ
c1jE−1; 1i þ � � �Þ. Thus, coincidence measurements should
expose correlations between the measured electron-energy
loss and photon detection. The equivalence to EELS experi-
ments is retrieved for weak couplings, where only one
energy loss quantum is detectable, with probability jgQuj2.
Higher EELS orders [44] necessitate a strong coupling
jgQuj ∼ 1. In Sec. S.2 of the Supplemental Material [40],
strong-coupling EELS is derived as “fieldless PINEM” to
touch upon their equivalence. A general feature of the
electron-energy distribution is that the average loss is
E0 − hEi ¼ jgQuj2, in either weak or strong coupling, with
and without laser illumination.
For a quantum-optics description of PINEM experi-

ments, one needs to consider a coherent state jαi with
an average number of jαj2 photons in the cavity. In this
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FIG. 1. Proposed experiment for a narrow bandwidth strong
coupling. (a) Evanescent optical field couples a cavity mode to an
adjacent electron. (b) Phase matching between the electron and
the cavity photon limits the coupling to a narrow spectral band.
For example, a 100 μm propagation near a Si3N4 cavity limits the
coupling bandwidth (expressed as EELS bandwidth) to 11 meV
around ℏω0 ¼ 1.166 eV (λ ¼ 1064 nm).
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case, the exact final electron-photon quantum state is
characterized by Eq. (1) with the coefficients cPINEMn;k ¼
hEk; njDðb̂gQuÞjE0; αi,

cPINEMn;k ¼ eðjgQuj2−jαj2Þ=2
αðnþkÞgkQuffiffiffiffiffi

n!
p

X∞
l¼0

�ðnþ kþ lÞ!
ðnþ kÞ!

�

×
ð−jgQuj2Þl
ðkþ lÞ!l! : ð5Þ

Section S.2 in the Supplemental Material [40] details the
algebraic derivation. Figure 2(b) presents the electron-
photon spectral probability map for the case of a strong
coupling (gQu ¼ 3) to a cavity populated with nine photons
in average, jαi ¼ j3i. The entanglement correlates diago-
nally as for an empty cavity, but also includes rich patterns.
Specifically, the electron spectrum depends strongly on
the entangled Fock state (see inset for n ¼ 2 and n ¼ 3).
The overall electron spectra is smooth (red bars, top axis),
similar to a spatial scattering of atoms off a coherent photon
state [45,46]. The electron energy distributes nearly sym-
metrically around the mean, −jgQuj2, with a spectral width
of 4jgQuαj. This generalizes PINEM [7,47,48], known for
its 4jgj bandwidth and for the symmetry around E0 (special
case of jgQuj2 → 0) [8].
To exactly retrieve known PINEM spectra, with prob-

ability amplitudes ck ¼ Jkð2jgjÞ [8,47], one needs to
consider strong optical fields jαj ≫ 1, weakly coupled to
the electron beam gQu ≪ 1. Jk is the Bessel function of the
first kind. Conveniently, Eq. (5) reduces to Bessel-function
amplitudes when approximating the square brackets within
it as

ðnþ kþ lÞ!
ðnþ kÞ! ≈ ðnþ kÞl:

Thus, one canwrite ðnþkÞlð−jgQuj2Þl¼ð−jgQu
ffiffiffiffiffiffiffiffiffiffi
nþk

p j2Þl.
The summation in Eq. (5) then transforms to
ð ffiffiffiffiffiffiffiffiffiffiffi

nþ k
p Þ−keik arg gJkð2jgjÞ, with the definition

jgj ¼ jgQu
ffiffiffiffiffiffiffiffiffiffiffi
nþ k

p j ≈ jgQuαj: ð6Þ

Neglecting quantum fluctuations added to the light by
the interaction ð ffiffiffiffiffiffiffiffiffiffiffi

nþ k
p Þ−k ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihnþ kip Þ−k decouples the

electron and photon states. Thus, the resulting state

jψPINEMi ¼ jαi ⊗ Jkð2jgjÞjEki ð7Þ

fully retrieves the known PINEM Bessel amplitudes
decoupled from the driving laser field. This decoupling
justifies the description of the optically modulated electron
wave function, with the natural emergence of the Rabi
parameter as g ¼ gQuα. The reduction of Eq. (5) to Eq. (7)
is expanded on in the Supplemental Material, Sec. S.2.2.1
[40]. Figure 2(c) shows the electron-photon spectra for
α ¼ 10, gQu ¼ 0.25, that is, a cavity with 100 photons
in average, weakly coupled to the electron beam. The
electron spectrum is nearly independent of the photon state,
yielding the electron spectral oscillations typical for Bessel
amplitudes.
The second strong-coupling phenomena exemplified

here is the non-Coulombic entanglement of two consecu-
tive electrons in a beam, mediated by long-lived cavity
photons. A lifetime of 10 ps allows excitations of the first
electron to affect the second, while suppressing Coulombic
interactions between them. The passage of the first electron
generates a state as in Eq. (4). A second electron with an
equal zero-loss energy (marked here E0 to distinguish it
from the first electron) will result in a three-particle state
jψe-e

f i¼ P∞
n¼0

P
n
k¼−∞ ce-en;kjE−n; Ek; n − ki, characterized

by two-indices ce-en;k¼hE−n;Ek;n−kjDðb̂gQuÞjE−n;E0;ni. k
is the energy quanta gained by the second electron and n is
the Fock state index prior to the arrival of the second
electron, which is also the final energy state of the first
electron jE−ni. The final Fock state of the cavity is jn − ki.
Thus,

ce-en;k ¼
gðnþkÞ
Qu

n!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − kÞ!p X∞

l¼0

ðnþ lÞ! ð−jgQuj
2Þl

ðkþ lÞ!l! : ð8Þ

Detailed derivations are in the Supplemental Material,
Sec. S.3 [40]. One can think of such an event as PINEM,
pumped by the first electron, as apparent in the similarity
of Eqs. (5) and (8). Figure 3 shows the resulting
entanglement features for strong couplings of gqu ¼ 1

and gqu ¼ 3. The single particle spectra (right axis, red
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FIG. 2. Electron-photon entanglement patterns. (a) Color map
of jcn;kj2, the coincident probabilities of photons with electron-
energy gain kℏω0, after a strong interaction (gQu ¼ 3) with an
empty cavity. (b) Rich entanglement features for an initial
coherent state jα ¼ 3i, in the cavity. Oscillations in the electron
spectra coincident with Fock states (cf. inset for n ¼ 2 and n ¼ 3)
are absent from the integrated electron spectrum (top axis, red
bars) since Fock states are orthogonal. (c) The known electron
spectrum for PINEM, jckj2 ¼ jJkð2jgjÞj2 (top, red bars), emerges
for weak coupling and highly populated cavity (gQu ¼ 0.25,
jαi ¼ j10i), with jgj ¼ jgQuαj. In this limit, the electron and
photon states are separable.
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bars) is smooth, while oscillations appear in coincidence
measurements. See the inset of Fig. 3(b) for a spectrum of
the second electron, coincident with a 12-quanta-loss
state of the first electron. In such an electron-pair experi-
ment, energy gains are unique to the second electron and
hence could be used to record coincident spectra without
separating the paths of the two electrons.
The last part of this Letter utilizes the above derivations

to quantitatively evaluate the coupling constant via PINEM.
Specifically, the term g ¼ gQuα in Eq. (6) links the coupling
constant to the classical acceleration of an electron by the
mode’s field. The field is represented as a coherent state jαi,
and the acceleration or deceleration is represented by g. For
an electron traveling the path 0 < z < L near a straight arm
of the cavity, the parallel acceleration is given by the light-

field component EðωÞ
z ðz; tðzÞÞ, evaluated for time tðzÞ. The

superscript ω indicates a frequency dependence. The
classically calculated electron-energy gain within the inter-

action region is q
R
L
0 EðωÞ

z ðz; tðzÞÞdz, where q is the electron
charge (transverse recoil is negligible, see Supplemental
Material, Sec. S.1.2.2 [40]). g is then the dimensionless
ratio between the electron-energy gain and the photon
energy [Eq. (3) in Ref. [8] ], which with Eq. (6) determines
the coupling constant as

gQu ¼
g
α
¼ 1

α

q
2ℏω

ZL

0

EðωÞ
z ðz; tðzÞÞdz: ð9Þ

Although gQu is calculated from classical fields, it is a
geometrical property of the apparatus for a given electron
zero-loss energy, since jαj ¼ ffiffiffi

n
p

∝ Ez. Intuitively, one can
interpret gQu as the strength of a PINEM effect for one
cavity photon. Equation (9) has few important aspects,
especially when implemented to a long interaction length,
e.g., many microns: (i) The optimal coupling occurs when

EðωÞ
z ðz; tðzÞÞ is constant along the electron trajectory, which

is the phase-matching condition. (ii) The field per photon

EðωÞ
z scales as 1=

ffiffiffiffi
L

p
and, for a given waveguide cross

section and a given field, the coupling scales as L. Thus,
the optimal coupling scales as

ffiffiffiffi
L

p
. (iii) Conceptually, the

ultimate coupling would be for a straight waveguide with
periodic boundary conditions and length L. One can
realistically reach 1=

ffiffiffi
2

p
of that, when accounting for a

backward propagating mode. (iv) The coupling bandwidth
is limited by dispersion [see Fig. 1(b)].
A cavity design for a strong coupling requires a small

optical-mode volume, matching the velocity of the electron
with that of the mode, and a meaningful field component Ez
in vacuum. Those can be achieved in WGM cavity, based
on a straight single-mode waveguide [see Fig. 1(a)]. The
waveguide’s width plays multiple roles: it minimizes the
mode volume, increases the evanescent tails in vacuum that
interact with the electron, increases the field component Ez,
and pushes the modal phase velocity towards the speed of
the relativistic electrons. The photon lifetime in the cavity
has to be substantially longer than the temporal extent
of the electron and the time it interacts with the cavity.
For example, a quality factor of 500, corresponding to a
lifetime of 1500 fs for photons with energies of 1.166 eV,
suffices for electron pulses of 200 fs [49], interacting
over L ¼ 100 μm.
Figure 4 shows the coupling of electron beams to a

mode with a photon energy of ℏω0 ¼ 1.166 eV (vacuum
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FIG. 3. Electron-electron interaction for two distant electrons in
a beam, mediated by long-lived photons. The color map jce−en;k j2 is
the coincident probability for nℏω0 energy loss of the first
electron and kℏω0 gain of the second. (a) Strong coupling,
gQu ¼ 1, allows for mutually exclusive states (dash circle) of the
electron pair, where if the first electron loses one quantum, the
second cannot be lossless. (b) Stronger interactions induce rich
entanglement features. (Inset) Lineout of the second electron
spectra, coincident with n ¼ 12.
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wavelength λ ¼ 1064 nm) in a step index profile [50]. For
the selected parameters (100 μm waveguide length with
463 nm diameter, electron zero-loss energy of 200 keV),
I find numerically that Ez on the outer surface of a
waveguide populated by a coherent state jαi is 0.0177×
jαj V=μm. For jαj ¼ 1, such a field accelerates an electron
by 15 meV=μm. When substituted into Eq. (9), the cou-
pling is gQu ¼ 0.76 (see more details in Supplemental
Material, Sec. S.5.1 [40]). Figure 4(b) presents the spectral
width of the interaction, derived from the coherence length
[51]. Comparison to the free spectral range for cavities
with total circumference of 2L (dashed line) indicates the
number of modes with which the electron may couple.
A Si3N4 cavity (orange line) allows for phase matching
with four optical modes, while silicon (blue line, for
213 nm diameter) allows for the coupling of a single
optical mode, or none.
A racetrack cavity with a 100-μm-long straight arm,

mentioned above, and a negligible semicircle circumference
can reach a coupling strength of gQu ¼ 0.76=

ffiffiffi
2

p ¼ 0.53,
where the

ffiffiffi
2

p
accounts for the noninteracting cavity arm.

The field evanescence length in vacuum is 120 nm. Thus, an
electron beam with a semiconvergence angle of 0.15 mrad
and a waist of 10 nm would experience a uniform light field.
These are achievable parameters in contemporary electron
microscopes. With this design scheme, unprecedented
strong-coupling and long-lived entanglement effects may
be reached in the not-distant future.
To conclude, this Letter proposes a path towards a

strong-coupling regime between electrons and cavity pho-
tons based on narrow-band phase matching and investigates
phenomena that this regime may enable. The analytical
model addresses EELS and PINEM on an equal footing
alongside strong-coupling phenomena. The coupling gQu,
which can be understood as the PINEM Rabi parameter g
per one driving photon, may be retrieved experimentally
using PINEM, via Eq. (9), or using EELS via the energy
loss probability jgQuj2, per optical mode. Additionally,
strong coupling to a cavity can entwine the quantum state
of two consecutive electrons, entangling their final ener-
gies. These phenomena, and the concrete design approach
brought here, set a road map for experiments on free
electrons strongly coupled with photons. In the future, the
ability to imprint quantum-optical states on relativistic
electron beams may enable the use of electrons as infor-
mation carriers. The fundamental differences between light
and electrons may open new horizons. One example is the
use of the high efficiency of electron detection to herald
single- or multiple-photon sources. Another is long-
distance communication in outer space, where matter
beams exhibit superior divergence properties and allow
for manipulation with electric and magnetic fields.
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