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Cold samples of calcium atoms are prepared in the metastable 3P1 state inside an optical cavity resonant
with the narrow band (375 Hz) 1S0 → 3P1 intercombination line at 657 nm. We observe a superradiant
emission of hyperbolic secant shaped pulses into the cavity with an intensity proportional to the square of
the atom number, a duration much shorter than the natural lifetime of the 3P1 state, and a delay time
fluctuating from shot to shot in excellent agreement with theoretical predictions. Our incoherent pumping
scheme to produce inversion on the 1S0 → 3P1 transition should be extendable to allow for continuous wave
laser operation.
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Conventional lasers typically operate in the so-called
good cavity limit, where the resonance bandwidth of the
feedback cavity is by far more narrow than the spectral width
of the gain profile. The achievable emission bandwidth is
presently approaching fundamental limitations by intrinsic
thermal fluctuations of the cavity materials [1–3], which is
one of the obstacles for further improvements of the precision
of atomic clocks [4]. An alternative approach to circumvent
these limitations relies on the use of an ultranarrow band-
width gain material, as provided by two-electron atoms like
calcium or strontium, in combination with a comparatively
large cavity bandwidth. In this so-called bad cavity regime,
the average intracavity photon number can be kept small and
even well below unity such that the intracavity field cannot
establish coherence, as in the good cavity regime. Here, it is
rather the long-lived atomic polarization providing the phase
memory necessary to form coherence by superradiant
emission, with the result of a sensitivity to technical noise
sources reduced by many orders of magnitude. Bad cavity
lasers, also referred to as superradiant lasers, are a subject of
ongoing theoretical [5–8] and experimental [9,10] research.
In the recent past, superradiant lasing has undergone a
renaissance in connection with the use of ultranarrow band
intercombination lines of alkaline-earth atoms [8,11–14],
which could provide extremely low emission bandwidths in
the submillihertz regime.
Superradiant emission of an inverted system in free space

has been studied since the fifties [15–22] followed by first
observations in the optical domain in the seventies [23–25].
More recently, a new line of research has been concerned
with the collective light scattering by dense ultra-cold
samples of atoms in free space as well as inside optical
cavities [26–29]. On a macroscopic level, a completely
inverted system represents an unstable equilibrium. Its
decay is triggered by microscopic quantum fluctuations,
which translate into macroscopic shot to shot delay time

fluctuations of classical superradiant light pulses. This
phenomenon has been theoretically studied [22,30], but
a quantitative comparison with experiments is yet missing.
In this Letter we report the first pulsed superradiant laser
with bosonic calcium (40Ca) atoms. This is achieved by
providing inversion with respect to the narrow band
(Γ=2π ¼ 375 Hz) 1S0 → 3P1 intercombination line at
657 nm [31]. Hyperbolic secant shaped pulses are observed
with a temporal delay that fluctuates from shot to shot, thus
reflecting the initial quantum stage of the pulse evolution.
The stochastic nature of superradiance is studied quanti-
tatively by measuring the pulse delay time statistics for
different numbers of participating emitters. We find excel-
lent agreement with an analytical model that does not
require the adjustment of fitting parameters. In contrast to a
recent first experimental realization of superradiant lasing
with strontium atoms [13,14], we use an incoherent pump
process to provide inversion, which should allow an
extension to continuous wave operation.
The preparation of inversion on the 1S0 → 3P1 transition

at 657 nm proceeds in the two steps illustrated in Fig. 1:
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FIG. 1. The two steps for preparation of inversion are sketched
in (a) and (b). An intracavity lattice at 800.8 nm is formed with
linear polarization along the x axis. P1 and P2 denote optical
pumping lasers with linear polarizations along the y axis and x
axis, operating at 432 nm and 429 nm, respectively. Laser
emission at 657 nm is recorded with a photon counter.
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initially, a magneto-optic trap (3P2-MOT), using the 57 kHz
3P2 → 3D3 closed cycle transition at 1978 nm, prepares
about 2 × 108 atoms at a temperature of 200 μK in the 3P2

state. Details are found in Refs. [32–35]. As sketched in
Fig. 1(a), the cold cloud of atoms produced in the 3P2-MOT
is superimposed upon a longitudinal mode of a linear cavity
with a finesse F ¼ 2200, a free spectral range of 2.5 GHz, a
transmission resonance bandwidth κ=π ¼ 2260 kHz, and a
(1=e2) waist w0 ¼ 190 μm (for light at a wavelength of
657 nm). The cavity exhibits a Purcell factor η≡
ð24F=πk2w2

0Þ ¼ 0.0051 with k ¼ 2π=657 nm [36]. A laser
beam at 800.8 nm, i.e., the magic wavelength [37] for the
1S0 → 3P1, m ¼ 0 transition for σ� polarized light, is
coupled to the cavity to create an intracavity optical lattice
potential. A laser beam (P1) at 432 nm, aligned with the
cavity mode with a waist of w0 ¼ 100 μm, pumps atoms
within a small tube around the lattice axis into the 3P0 state,
where they are trapped in the lattice potential. The intensity
of this beam is low such that only atoms passing the pump
volume at low velocities, hence interacting with this beam
for a sufficiently long amount of time, are pumped [38–40].
Thus, up to several 105 atoms in the 3P0 state are typically
trapped in the lattice potential with a temperature of about
100 μK and a peak density of 1010 cm−3. Adjustment and
technical fluctuations of the atom number are discussed in
more detail in Ref. [41]. The trapped atom cloud extends
over 2.5 mm along the lattice axis corresponding to several
thousand lattice sites with an average population of a single
pancake-shaped site of several ten atoms. Hence, contact
interaction between atoms may be completely neglected.
Also, in contrast to superradiant scattering in Bose-Einstein
condensates, at these low densities, no complex light
propagation dynamics occurs [45].
In a second phase of the preparation protocol, sketched

in Fig. 1(b), the 3P2-MOT is switched off, a homogeneous
magnetic field of a few Gauss is oriented along the y axis
and an additional laser at 429 nm (P2), also adjusted along
the cavity axis, however linearly polarized in the x
direction, is activated during 50 μs, in order to rapidly
pump all 3P0 atoms into the 3P1 state. According to a rate
equation model of the optical pumping dynamics, only
about 25% of the 3P1 atoms are transferred into the relevant
m ¼ 0 state, which acts as the upper laser level. The applied
homogeneous magnetic field shifts the magnetic m ¼ �1
atoms several MHz out of resonance with the cavity. The
lattice potential provides the same light shift for the 3P1,
m ¼ 0 and 1S0 states [46] and operates well within the
Lamb-Dicke regime, such that the Doppler effect is sup-
pressed along the z direction to the first order. Hence, if the
cavity is tuned into resonance, superradiant emission of a
large fraction of the 3P1, m ¼ 0 atoms can arise. Precisely
controlled tuning of the laser cavity resonance with respect
to the 1S0 → 3P1 transition frequency is achieved by
actively stabilizing the cavity to a diode laser beam at

780.2 nm locked to a Doppler-free resonance of rubidium
atoms and sent through a electro-optic fiber modulator
(EOFM) tunable between 400 and 1000 MHz. Adjusting
the EOFM driving frequency, the cavity resonance is
adjusted to match the atomic resonance at 657 nm (see
the Supplemental Material [41] for details). The lattice
frequency is actively stabilized to the longitudinal mode of
the laser cavity that is closest to the magic wavelength, i.e.,
less than half of the free spectral range, which amounts to
1.25 GHz.
After preparing an inverted sample of several 104 atoms

in the metastable 3P1, m ¼ 0 state, we observe a super-
radiant pulsed emission (linearly polarized along the y
axis), which brings a significant fraction of the atoms into
the 1S0 ground state in a time much shorter than the natural
life time of the 3P1 state. The inset in the upper right corner
of Fig. 2 compares the natural noncooperative exponential
decay with an observed life time of 420 μs (black dots
approximated by red dashed line) with the case when a
short (≈10 μs) superradiant pulse is emitted (blue graph).
In both cases a sample of metastable calcium atoms in the
3P1 state is prepared with the cavity tuned into resonance
with the 1S0 → 3P1 transition only in the latter case. The
noncooperative emission into free space is observed in the
xy plane at an angle of 22.5° with respect to the y axis.
The main panel of Fig. 2 is enlarged to highlight the first
150 μs showing superradiant light pulses with five different
peak photon numbers and peak times. Each trace represents
a single-shot implementation. The observed pulses can be
well fitted with hyperbolic secants derived from a

FIG. 2. The inset (upper right corner) compares the natural
noncooperative exponential decay (black dots) with the case
when a short (≈10 μs) superradiant pulse is emitted (blue graph).
The red dashed line is a fit with two exponential functions as
explained in the text. In order to present both graphs in the same
plot, their vertical axes are scaled differently. The main panel
shows superradiant light pulses for atom numbers N0 ¼
12 800; 19 700; 26 500; 34 000; 42 300 from right to left. The
solid black line indicates the pump pulse that acts to populate
the 3P1 state. The black dots, modeled by the dashed red line
graph, repeat the natural decay curve of the inset.
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semiclassical analytical model outlined below and in more
detail in Ref. [41]. Two parameters are determined from
these fits: the number of collectively emitting atoms N0 and
the time tp when the pulse attains its maximum. For the
shown pulses, N0 ¼ 12 800; 19 700; 26 500; 34 000; 42 300
from right to left. Besides N0 and tp the hyperbolic secant
fit model comprises the Purcell factor of the cavity η, the
natural linewidth Γ of the used transition, and the bunching
parameter B. The latter accounts for a reduction of the
atom-cavity coupling strength resulting from the fact that
the period of the atomic grating held by the magic lattice
(800.8 nm) and that of the intracavity standing wave at the
emission wavelength (657.5 nm) are not commensurate.
For a homogeneous atomic distribution the value of B
should be 1=2, while our experimental data are best
described by B ≈ 0.65. This value, which matches with a
more elaborate analysis in Ref. [47], is used in all fits.
Taking into account the losses between the cavity and the
photon counter and the detector efficiency, the specified
counting rate is calibrated to indicate the total rate of
photons leaving the cavity through both mirrors. A count-
ing rate of 109 s−1 corresponds to an intracavity photon
number n ≈ 70.
A notable observation is that the average pulse peak time

t̄p grows with decreasing N0, while for fixed N0 the
individually measured values of tp fluctuate around t̄p.
In order to determine t̄p and its dependence on the atom
number N0, we recorded several thousand pulses and
plotted the averages over the observed pulse peak times
t̄p versus N0 using a binning N0 � 2500 for the atom
number, such that each data point in the blue trace in
Fig. 3(a) represents several hundred pulses with nearly
equal atom number. The error bars depict the standard
deviations Δtp, which, similarly as t̄p itself, are observed to
decrease for increasing N0. In the red trace of (a), we
subtract the analytical model t̄d ¼ ðN0ηBΓÞ−1 logðN0Þ,
discussed below and in Ref. [41]. This model assumes
the instantaneous formation of complete inversion at some
initial time t0. For the choice B ¼ 0.65, we remain with a
practically constant temporal offset of 24 μs (red dashed
line), which represents the time t0 when inversion is
effectively formed by the pump pulse. The blue dotted
line graph shows t̄d þ t0. Apart from the choice of B, this
procedure does not involve any parameter adjustment, thus
confirming the validity of the theoretical description.
In our experiment, according to the scheme illustrated in

Fig. 1(b), the upper laser level 3P1, m ¼ 0 is in fact not
instantaneously pumped, but rather loaded at a rate
RðtÞ≡ ðN0=τpÞe−t=τp , where τp denotes the 1=e time for
this process (see Fig. 2). The corresponding population of
the upper laser level is NðtÞ ¼ R

t
0 dsRðsÞ ¼ N0ð1 − e−t=τpÞ.

The limited intensity available for the lasers P1 and P2 in
Fig. 1(b) gives rise to τp ≈ 21 μs. An analysis deferred to
Ref. [41] shows that the pulse peak time t̄p can be

nevertheless written as a sum t̄p ¼ t0 þ t̄d, where t0 only
depends on τp but not on N0, and t̄d denotes the mean pulse
delay time found for a scenario of instantaneous pumping,
i.e., with RðtÞ ¼ 0 and the upper laser level initially
populated by N0 atoms at time t0.
One may go beyond the determination of t̄p and Δtp

and consider the full pulse delay time probability distri-
bution. Restricting ourselves to two different atom numbers
N1 ¼ 3 × 104 and N2 ¼ 1.5 × 104 we proceed as follows:
the time axis is partitioned into time windows of 5 μs
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FIG. 3. (a) Pulse delay time versus N0. The blue data points
denote the observed pulse peak times t̄p. The red points arise, if
the analytical model t̄d is subtracted from the blue points leaving
a small constant rest t0. The blue dotted line graph shows t̄d þ t0.
(b) Observed (histograms) and theoretically predicted (solid line
graphs) delay time probability distributions (plotted versus td,
i.e., with t0 subtracted) for pulses with atom numbers around
N1 ¼ 3 × 104 (blue) and N2 ¼ 1.5 × 104 (yellow). (c) The green
disks show the standard deviations of the observed pulse delay
time versus the atom number N0 for a partition dividing the N0

axis into seven sectors. The error bars show the corresponding
standard deviations of the mean. The dashed green line shows the
theoretical expectation according to PdðtdÞ. The dashed red line
in addition includes a systematic contribution due to the use of a
finite partition.
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width and the number of pulses with atom numbers in the
interval N i ≡ ½Ni − δN;Ni þ δN�; i ∈ f1; 2g with δN ¼
5 × 103 falling into each time window is counted.
The histograms (normalized to unity) thus obtained for
the two choices Ni, i ∈ f1; 2g are plotted in Fig. 3(b).
Our theoretical model predicts a delay time distribution
PdðtdÞ≡ N2

0BηΓe−N0BηΓtd expð−N0e−N0BηΓtdÞ. The solid
line graphs in Fig. 3(b) show hPdðtdÞiN0∈N i

where the
bracket denotes averaging over all values of N0 within the
interval N i. Very good agreement between the observa-
tions and our analytical model is found, which does not rely
on the adjustment of fit parameters. Finally, in Fig. 3(c), the
observed standard deviations of the pulse delay times as
given by the error bars in Fig. 3(a) are plotted versus the
atom number N0 (green disks) and compared to the
theoretical expectations according to PdðtdÞ (dashed green
line graph). Again, no parameter adjustment is applied. The
observed fluctuations exceed the theoretical predictions for
small atom numbers. A smaller part of this disagreement can
be attributed to the choice of a relatively coarse partition in
Fig. 3(c), used to ensure that each atom number class
comprises a large number of pulses. The dashed red line
graph shows the theoretically expected standard deviations
including this partition-dependent contribution. See the
Supplemental Material [41] for details. The remaining
discrepancy between theory and experiment for small
atom numbers might be due to the correspondingly large
pulse delay times, which should increase possible
contributions from technical fluctuations. Note also that
we do not observe pulseswithN0 < 104, which indicates the
presence of a possible threshold that could be attributed to
inhomogeneous line broadening (see the Supplemental
Material [41]).
We now briefly summarize the theoretical model

used to determine the delay time probability distribution
PdðtdÞ and the mean delay time t̄d for the case of
instantaneous formation of inversion. The extension to
the case of noninstantaneous pumping is deferred to the
Supplemental Material [41]. Our starting point is a modi-
fied semiclassical laser equation for N0 two-level atoms all
occupying the excited state at time t ¼ 0 [as e.g., in
Eq. (8.8) on page 230 of Ref. [48] ]. We account for the
fact that for a sample of N0 atoms at positions za along the
axis of the lasing cavity mode, which is associated with an
intensity distribution cos2ðkzaÞ, the effective coupling
strength is reduced by the bunching parameter
B≡ ð1=N0Þ

P
acos

2ðkzaÞ. For 0 < t ≪ Γ−1, a solution
for the intracavity photon number is given by the pulse
nðtÞ ¼ ðηBΓ=8κÞN2

0 sech
2½1
2
N0ηBΓðt − tdÞ� with sechðzÞ

denoting the hyperbolic secant. Setting t ¼ 0 and n0 ≡
nð0Þ leads to n0 ≈ ðηBΓ=2κÞN2

0e
−N0ηBΓtd and hence

dn0 ¼ −N0ηBΓn0dtd. The delay time td is determined
by the initial photon number at t ¼ 0, which can be
evaluated as follows. The mean rate of spontaneous
photons released into the cavity at times much shorter

than ðN0ηΓÞ−1 is Rsp ¼ N0ηBΓ, which is compensated by
the photon loss rate 2κ to yield the steady state photon
number n̄0 ¼ ðRsp=2κÞ. The rate Rsp corresponds to an
average time between successive spontaneous photons
Δtsp ¼ ðN0ηBΓÞ−1, which is on the order of 10 μs.
Assuming that n̄0 equals the initial photon number n0 at
t ¼ 0, we may evaluate the mean delay time as
t̄d ¼ ðN0ηBΓÞ−1 logðN0Þ. We may go one step further
and calculate the delay time distribution. Note that n̄0 is
on the order of 10−2 and hence much smaller than unity.
For this case the probability for N0 atoms to spontaneously
emit n0 photons into the cavity, generally given by a
binomial distribution, can be well approximated by an
exponential. Hence, the probability of initially finding n0
photons in the cavity is given by the normalized distribu-
tion Piðn0Þ≡ ð1=n̄0Þ expðn0=n̄0Þ, which reproduces the
previously determined steady state photon number n̄0.
With the expressions of td and dtd=dn0 as functions of
n0, discussed above, one finds Piðn0Þdn0 ¼ PdðtdÞdtd,
where PdðtdÞ is the delay time distribution used in
Fig. 3(b). It is worthwhile to note that the expressions
obtained for PdðtdÞ and t̄d are in accordance with reduced
expressions, merely depending on N0 and Γ, reported in
Ref. [22] to model superradiance for a homogeneous
atomic sample in free space with no cavity present.
In contrast to Ref. [14], an incoherent pump process is

used in our work to provide inversion, which should allow
for an extension to continuous wave operation. Two
different strategies into this direction could be followed.
One option could be to use 657 nm radiation to re-excite
ground state atoms to 3P1, m ¼ �1 and subsequently
optically pump them with the help of 430 nm radiation
to 3P1, m ¼ 0. A second option is to enable the loading of
the magic lattice with 3P2 atoms directly from the 3P2-
MOT. At present, this is not possible, because the magic
lattice wavelength leads to a large negative light shift of the
upper MOT level 3D3, such that the MOT frequency is
tuned to the blue side of the atomic resonance and hence
lattice loading is impeded. This could be counteracted by
an additional laser that selectively provides a compensating
positive light shift to the 3D3 state. Similar results as
obtained in the present Letter should also be possible for
the 1S0 → 3P0 transition. This transition can be endowed
with an finite linewidth in the subhertz range adjusted by
adding a small admixture of the 3P1 state to 3P0 by means of
a homogeneous magnetic field of a few Gauss [49]. This
could give rise to a superradiant laser with an adjustable
extremely narrow bandwidth. Note that in this case the
extension to continuous operation is straightforward, since
the 3P0 state can be continuously loaded from the 3P2-
MOT, as already shown in this Letter.

This work was partially supported by DFG-
He2334/15.1. We thank Claus Zimmermann for useful
discussions.

PHYSICAL REVIEW LETTERS 123, 103601 (2019)

103601-4



*hemmerich@physnet.uni-hamburg.de
[1] B. C. Young, F. C. Cruz, W.M. Itano, and J. C. Bergquist,

Phys. Rev. Lett. 82, 3799 (1999).
[2] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F.

Riehle, M. J. Martin, L. Chen, and J. Ye, Nat. Photonics 6,
687 (2012).

[3] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R.
Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J.
Ye, F. Riehle, and U. Sterr, Phys. Rev. Lett. 118, 263202
(2017).

[4] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O.
Schmidt, Rev. Mod. Phys. 87, 637 (2015).

[5] M. Lax, in Physics of Quantum Electronics, edited by
P. L. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill,
New York, 1966).

[6] H. Haken, Laser Theory (Springer-Verlag, Berlin, 1984).
[7] F. Haake, M. I. Kolobov, C. Fabre, E. Giacobino, and S.

Reynaud, Phys. Rev. Lett. 71, 995 (1993).
[8] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Phys.

Rev. Lett. 102, 163601 (2009).
[9] S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman,

Phys. Rev. Lett. 72, 3815 (1994).
[10] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J.

Holland, and J. K. Thompson, Nature (London) 484, 78
(2012).

[11] J. Chen and X. Chen, in Proceedings of the 2005 IEEE
International Frequency Control Symposium and Exposi-
tion, 2005 (IEEE, 2005), https://doi.org/10.1109/FREQ
.2005.1574003.

[12] J. Chen, Chin. Sci. Bull. 54, 348 (2009).
[13] M. A. Norcia and J. K. Thompson, Phys. Rev. X 6, 011025

(2016).
[14] M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K.

Thompson, Sci. Adv. 2, e1601231 (2016).
[15] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[16] V. Ernst and P. Stehle, Phys. Rev. 176, 1456 (1968).
[17] N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735

(1971).
[18] R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev. A

4, 302 (1971).
[19] F. Haake and R. Glauber, Phys. Rev. A 5, 1457 (1972).
[20] R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507

(1975).
[21] R. Glauber and F. Haake, Phys. Rev. A 13, 357 (1976).
[22] M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).
[23] N. Skribanowitz, l. P. Herman, J. C. MacGillivray, and M. S.

Feld, Phys. Rev. Lett. 30, 309 (1973).
[24] M. Gross, C. Fabre, P. PiIlet, and S. Haroche, Phys. Rev.

Lett. 36, 1035 (1976).
[25] Ph. Cahuzac, H. Sontag, and P. E. Toschek, Opt. Commun.

31, 37 (1979).

[26] S. Inouye, T. Pfau, S.Gupta, A. P. Chikkatur, A. Görlitz, D. E.
Pritchard, andW. Ketterle, Nature (London) 402, 641 (1999).

[27] S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W.
Courteille, Phys. Rev. Lett. 98, 053603 (2007).

[28] H. Keßler, J. Klinder, M. Wolke, and A. Hemmerich, Phys.
Rev. Lett. 113, 070404 (2014).

[29] J. H. Müller, D. Witthaut, R. le Targat, J. J. Arlt, E. S. Polzik,
and A. J. Hilliard, J. Mod. Opt. 63, 1886 (2016).

[30] F. Haake, J. W. Haus, H. King, G. Schröder, and R. Glauber,
Phys. Rev. A 23, 1322 (1981).

[31] F. Riehle, Frequency Standards, Basics and Applications
(Wiley-VCH, Weinheim, 2004).

[32] J. Grünert and A. Hemmerich, Appl. Phys. B 73, 815
(2001).

[33] J. Grünert and A. Hemmerich, Phys. Rev. A 65, 041401(R)
(2002).

[34] D. Hansen, J. Mohr, and A. Hemmerich, Phys. Rev. A 67,
021401(R) (2003).

[35] D. Hansen and A. Hemmerich, Phys. Rev. Lett. 96, 073003
(2006).

[36] E. M. Purcell, Phys. Rev. 69, 37 (1946).
[37] H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D.

Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003).
[38] C. Y. Yang, P. Halder, O. Appel, D. Hansen, and A.

Hemmerich, Phys. Rev. A 76, 033418 (2007).
[39] P. Halder, C.-Y. Yang, and A. Hemmerich, Phys. Rev. A 85,

031603(R) (2012).
[40] P. Halder, H. Winter, and A. Hemmerich, Phys. Rev. A 88,

063639 (2013).
[41] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.103601 for the
theoretical modeling, experimental procedures, and data
analysis protocols, which includes Refs. [42–44].

[42] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,
Atom-Photon Interactions: Basic Processes and Applica-
tions (Wiley-VCH, New York, 1992).

[43] H. Tanji-Suzuki, I. D. Leroux, M. H. Schleier-Smith, M.
Cetina, A. T. Grier, J. Simon, and V. Vuletic, Adv. At. Mol.
Opt. Phys. 60, 201 (2011).

[44] A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, Opt.
Lett. 26, 1562 (2001).

[45] L. Deng, M. G. Payne, and E. W. Hagley, Phys. Rev. Lett.
104, 050402 (2010).

[46] C. Degenhardt, H. Stoehr, U. Sterr, F. Riehle, and Ch.
Lisdat, Phys. Rev. A 70, 023414 (2004).

[47] J. Hu, W. Chen, Z. Vendeiro, H. Zhang, and V. Vuletić,
Phys. Rev. A 92, 063816 (2015).

[48] D. Meschede, Optics, Light and Lasers (Wiley-VCH,
Berlin, 2004).

[49] A. V.Taichenachev,V. I.Yudin,C.W.Oates,C.W.Hoyt,Z.W.
Barber, and L. Hollberg, Phys. Rev. Lett. 96, 083001 (2006).

PHYSICAL REVIEW LETTERS 123, 103601 (2019)

103601-5

https://doi.org/10.1103/PhysRevLett.82.3799
https://doi.org/10.1038/nphoton.2012.217
https://doi.org/10.1038/nphoton.2012.217
https://doi.org/10.1103/PhysRevLett.118.263202
https://doi.org/10.1103/PhysRevLett.118.263202
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/PhysRevLett.71.995
https://doi.org/10.1103/PhysRevLett.102.163601
https://doi.org/10.1103/PhysRevLett.102.163601
https://doi.org/10.1103/PhysRevLett.72.3815
https://doi.org/10.1038/nature10920
https://doi.org/10.1038/nature10920
https://doi.org/10.1109/FREQ.2005.1574003
https://doi.org/10.1109/FREQ.2005.1574003
https://doi.org/10.1109/FREQ.2005.1574003
https://doi.org/10.1109/FREQ.2005.1574003
https://doi.org/10.1109/FREQ.2005.1574003
https://doi.org/10.1103/PhysRevX.6.011025
https://doi.org/10.1103/PhysRevX.6.011025
https://doi.org/10.1126/sciadv.1601231
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.176.1456
https://doi.org/10.1103/PhysRevA.3.1735
https://doi.org/10.1103/PhysRevA.3.1735
https://doi.org/10.1103/PhysRevA.4.302
https://doi.org/10.1103/PhysRevA.4.302
https://doi.org/10.1103/PhysRevA.5.1457
https://doi.org/10.1103/PhysRevA.11.1507
https://doi.org/10.1103/PhysRevA.11.1507
https://doi.org/10.1103/PhysRevA.13.357
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1103/PhysRevLett.30.309
https://doi.org/10.1103/PhysRevLett.36.1035
https://doi.org/10.1103/PhysRevLett.36.1035
https://doi.org/10.1016/0030-4018(79)90239-6
https://doi.org/10.1016/0030-4018(79)90239-6
https://doi.org/10.1038/45194
https://doi.org/10.1103/PhysRevLett.98.053603
https://doi.org/10.1103/PhysRevLett.113.070404
https://doi.org/10.1103/PhysRevLett.113.070404
https://doi.org/10.1080/09500340.2016.1207815
https://doi.org/10.1103/PhysRevA.23.1322
https://doi.org/10.1007/s003400100768
https://doi.org/10.1007/s003400100768
https://doi.org/10.1103/PhysRevA.65.041401
https://doi.org/10.1103/PhysRevA.65.041401
https://doi.org/10.1103/PhysRevA.67.021401
https://doi.org/10.1103/PhysRevA.67.021401
https://doi.org/10.1103/PhysRevLett.96.073003
https://doi.org/10.1103/PhysRevLett.96.073003
https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1103/PhysRevLett.91.173005
https://doi.org/10.1103/PhysRevA.76.033418
https://doi.org/10.1103/PhysRevA.85.031603
https://doi.org/10.1103/PhysRevA.85.031603
https://doi.org/10.1103/PhysRevA.88.063639
https://doi.org/10.1103/PhysRevA.88.063639
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.103601
https://doi.org/10.1016/B978-0-12-385508-4.00004-8
https://doi.org/10.1016/B978-0-12-385508-4.00004-8
https://doi.org/10.1364/OL.26.001562
https://doi.org/10.1364/OL.26.001562
https://doi.org/10.1103/PhysRevLett.104.050402
https://doi.org/10.1103/PhysRevLett.104.050402
https://doi.org/10.1103/PhysRevA.70.023414
https://doi.org/10.1103/PhysRevA.92.063816
https://doi.org/10.1103/PhysRevLett.96.083001

