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A key incentive of quantum gravity is the removal of spacetime singularities plaguing the classical
theory. We compute the nonperturbative momentum dependence of a specific structure function within the
gravitational asymptotic safety program which encodes the quantum corrections to the graviton propagator
for momenta above the Planck scale. The resulting quantum-corrected Newtonian potential approaches a
constant negative value as the distance between the two point masses goes to zero, thereby removing the
classical singularity. The generic nature of the underlying mechanism suggests that it will remain operative
in the context of black hole and cosmic singularities.
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General relativity provides a well-established theory for
gravity from submillimeter up to cosmic scales [1]. It has
been extremely successful in predicting phenomena like the
bending of light by a gravitational field, the gravitational
redshift of photons, or the existence of gravitational waves.
Another striking feature of general relativity is that its
solutions rather generically contain specific points where
the curvature of spacetime diverges, so-called singularities
[2]. Well-known examples are the curvature singularities of
classical black holes. This feature is often paraphrased as
“general relativity predicting its own breakdown” [3] and
provides one of the central motivations for the search of a
more complete theory of gravity, commonly referred to as
“quantum gravity.” Conversely, any candidate for such a
theory should explain the fate of these spacetime singu-
larities. In loop quantum gravity, black hole singularities
may be removed by quantum geometry effects [4–6]; also
see [7] for a recent review. Similarly, the fuzzball proposal
[8,9] provides a mechanism for obtaining regular black
holes in the framework of string theory. For the gravita-
tional asymptotic safety program [10–14], the method of
renormalization group improvement suggests that black
hole singularities may be removed by quantum effects
[15,16]; also see [17,18] for the current status and further
references. The present work takes a key step towards
understanding the fate of spacetime singularities within
asymptotic safety, based on a first-principles computation.
Our main finding is displayed in Fig. 3, showing that
the short-distance divergence in the spin-2 channel of

Newton’s gravitational potential is resolved by quantum
gravity effects.
In order to exhibit this effect, we follow the path taken in

the effective field theory treatment of quantum gravity
[19,20] and construct the gravitational potential VðrÞ
arising from the one-graviton exchange between two scalar
fields with massesm1 andm2 minimally coupled to gravity.
Taking the static limit where the two scalars have infinite
mass, one has [20,21]

VðrÞ ¼ −
1

2m1

1

2m2

Z
d3q
ð2πÞ3 e

iq·rM: ð1Þ

Denoting Newton’s coupling byG, the scattering amplitude
associated with the Feynman diagram (Fig. 1) evaluated in
general relativity is M ¼ 16πGm2

1m
2
2=jqj2, evaluated for

the nonrelativistic limit of the propagator qα ¼ ð0;qÞ.
Evaluating the Fourier integral, one recovers the classical
Newtonian gravitational potential VcðrÞ ¼ −Gm1m2=r.
In the following, we will focus on the contribution of the

transverse-traceless (spin-2) mode to M. [The complete
analysis should also include the quantum corrections to the
gravitational propagator for the spin-0 mode. This requires
adding the structure function RfkðΔÞR to the ansatz for
Eq. (4) encoding the nontrivial momentum dependence of

FIG. 1. Tree-level amplitude describing the interaction of two
scalars of massm1 andm2 (dashed lines) due to the exchange of a
graviton (double line).
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the scalar propagator. This analysis is beyond the scope of
this work and will be presented elsewhere [22]. We expect
that this will give rise to similar corrections as the ones
entering (5).] Performing the tensor contractions and taking
the static limit, one finds

MTT ¼ 64πG
3

m2
1m

2
2G

TTðq2Þ; ð2Þ

where GTT is the scalar part of the spin-2 propagator
carrying the momentum dependence and is obtained from
the full propagator by a contraction with the transverse-
traceless projector. For the Einstein-Hilbert action, GTT ¼
1=q2 so that the resulting potential VTT

c ∝ 1=r diverges as
r → 0. In this sense, the nonrelativistic limit already
includes many of the essential features related to the
curvature singularity encountered in black hole physics.
Treating gravity as an effective field theory allows us to

compute the leading (long-distance) quantum corrections
to VcðrÞ using perturbation theory [19,20]. These correc-
tions do not resolve the divergence in VcðrÞ, though.
Equation (2) then suggests to compute the nonperturbative
propagator GTTðq2Þ and to investigate the resulting short-
distance behavior of the quantum-corrected potential
VTT
q ðrÞ. In this work, we perform such a computation

within the gravitational asymptotic safety program.
Structure functions for gravity.—A canonical tool for

computing properties of a quantum field theory beyond the
realm of perturbation theory is the Wetterich equation
[23,24]

k∂kΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1k∂kRk�; ð3Þ

governing the change of the effective average actionΓk when
quantum fluctuations around the momentum scale k are

integrated out. Here, Γð2Þ
k denotes the second functional

derivative of Γk with respect to the fluctuation field,Rk is a
suitable regulator function which provides a mass term for
fluctuations with momenta p2 < k2 and vanishes for
p2 ≫ k2, and the trace contains a sum over fluctuation fields
as well as an integral over loop momentum. By now, the
Wetterich equation has proven its merits in statistical physics
[25], nonequilibrium physics [26], and gauge theories [27].
Starting from the pioneering work in Ref. [28], which
introduced the functional renormalization group in the
context of gravity, there is now solid evidence supporting
the existence of a nontrivial renormalization group fixed
point for four-dimensional gravity [11,29–50] and many
gravity-matter systems potentially including the standard
model of particle physics [13,51–62]. In particular, the full
momentum dependence of the gravitational propagators
starting from Γk given by the Einstein-Hilbert action has
been studied in Refs. [63,64]. Assuming that this fixed point
controls the short-distance behavior of the gravitational

interaction for lengths l smaller than the Planck length lPl ≈
10−35 m would put gravity in the class of nonperturbatively
renormalizable quantum field theories along the lines of
Weinberg’s asymptotic safety scenario [65].
A virtue of Wetterich’s equation (3) is that one can

extract nonperturbative information about a given quantum
theory by making a suitable ansatz for Γk and studying
the flow of the effective average action on the correspond-
ing subspace. A suitable ansatz capturing the momentum
dependence of the gravitational propagator involves scale-
dependent structure functions acting on curvature tensors.
In this work, we will focus on the nontrivial momentum
dependence of the spin-2 propagator captured by

Γgrav
k ¼ 1

16πGk

Z
d4x

ffiffiffi
g

p ½−Rþ 2Λk þ CμνρσWkðΔÞCμνρσ�:

ð4Þ

Here, R, Cμνρσ , and Δ≡ −gμνDμDν denote the Ricci scalar,
Weyl tensor, and Laplacian constructed from the spacetime
metric gμν, respectively. Furthermore, the ansatz contains a
scale-dependent Newton’s coupling Gk and cosmological
constant Λk as well as the scale-dependent structure
function WkðΔÞ. Expanding (4) in fluctuations around flat
space and restricting the result to the transverse-traceless
sector yields the graviton propagator

GTTðq2Þ ¼ ½q2 þ 2ðq2Þ2Wkðq2Þ�−1: ð5Þ

Thus, the structure function Wkðq2Þ captures nontrivial
corrections to the graviton propagator. The Einstein-Hilbert
result is recovered by setting Wkðq2Þ ¼ 0.
The scale dependence of Gk, Λk, and Wkðq2Þ can be

obtained by supplementing the ansatz (4) by suitable
gauge-fixing and ghost terms, substituting the resulting
expression into Wetterich’s equation (3), and projecting the
trace on the subspace spanned by the ansatz. The calcu-
lation of the flow equations for Newton’s coupling and the
cosmological constant takes into account the full fluc-
tuation spectrum. Owing to the formidable complexity of
the computation, the flow of Wk is evaluated in the
conformally reduced setting [66,67], where the right-hand
side of the flow equation retains the fluctuations of the
conformal mode only. In this case, the spacetime metric gμν
is taken to be of the form gμν ¼ ½1þ ð1=4Þh�ĝμν, where h is
the fluctuation field and ĝμν is a fixed but arbitrary reference
metric. From analogous computations in the framework of
fðRÞ gravity [37,68–71], it is expected that the resulting
qualitative behavior of the structure function matches the
one obtained from including all metric fluctuations.
Our goal is to find a self-consistent flow equation

retaining the full information on the functional form of
WkðΔÞ, i.e., without making approximations related to the

PHYSICAL REVIEW LETTERS 123, 101301 (2019)

101301-2



momentum dependence. We achieve this goal by combin-
ing two computational techniques tailored to the two
classes of curvature terms appearing in the trace evaluation.
Terms containing less than two powers of a (potentially
contracted) Riemann tensor are evaluated using Mellin
transform techniques [72] together with the nonlocal heat-
kernel results [73]. Terms containing two powers of the
Weyl tensor are evaluated using flat-space momentum-
space techniques. [The technical details on how the exact
momentum dependence is retained and the conceptual
relation between the structure function WkðΔÞ and the
momentum-dependent anomalous dimensions ηðp2Þ stud-
ied within the vertex expansion of Γk [50,63,64,74] are
provided in Ref. [75].] The resulting flow equations are
conveniently expressed in terms of the dimensionless,
scale-dependent couplings

g≡Gkk2; λ≡Λkk−2; wðq2Þ≡k−2WkðΔ=k2Þ: ð6Þ

Neglecting the contribution of the structure function, the
flow in the Einstein-Hilbert sector is governed by [28,76]

k∂kλ¼ðηN−2Þλþ g
2π

½10Φ1
2ð−2λÞ−8Φ1

2ð0Þ−5ηNΦ̃1
2ð−2λÞ�;

k∂kg¼ð2þηNÞg; ð7Þ

with the anomalous dimension of Newton’s coupling ηN ≡
k∂k lnGk being given by

ηN ¼
g
3π ½5Φ1

1ð−2λÞ − 18Φ2
2ð−2λÞ − 4Φ1

1ð0Þ − 6Φ2
2ð0Þ�

1þ g
6π ½5Φ̃1

1ð−2λÞ − 18Φ̃2
2ð−2λÞ�

:

ð8Þ

The threshold functions

Φp
nðμÞ ¼ 1

ΓðnÞ
Z

∞

0

dzzn−1
RðzÞ − zR0ðzÞ
½zþ RðzÞ þ μ�p ;

Φ̃p
nðμÞ ¼ 1

ΓðnÞ
Z

∞

0

dzzn−1
RðzÞ

½zþ RðzÞ þ μ�p ð9Þ

contain the dimensionless profile function RðzÞ related to
Rk [28].
The flow of wðq2Þ is treated in the conformally reduced

approximation. This leads to the linear integro-differential
equation

k∂kwðq2Þ ¼ ð2þ ηNÞwðq2Þ þ 2q2w0ðq2Þ þ g
24π

Z
1=4

0

duð1 − 4uÞ3=2 ð2 − ηNÞRðuq2Þ − 2uq2R0ðuq2Þ
uq2 þ Rðuq2Þ − 4

3
λ

þ 16g
3π2

Z
∞

0

dp
Z

1

−1
dxp3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ð2 − ηNÞRðp2Þ − 2p2R0ðp2Þ
½p2 þ Rðp2Þ − 4

3
λ�2

�
1

8
½wðp2 þ 2pqxþ q2Þ − wðq2Þ�

þ 2q4 þ 4ðq2 − p2ÞðpqxÞ þ p2q2ð7 − 6x2Þ
16ðp2 þ 2pqxÞ2 ½wðp2 þ 2pqxþ q2Þ − wðq2Þ�

þ 3p4 − 2q4 þ 22p2ðpqxÞ − 5p2q2ð1 − 6x2Þ
16ðp2 þ 2pqxÞ w0ðq2Þ

�
: ð10Þ

Here, the primes denote derivatives with respect to the
argument, and q is the dimensionless external momentum.
The inhomogeneous term appearing in the first line
originates from the Einstein-Hilbert sector. Thus, the
quantum fluctuations from classical gravity will induce a
nontrivial structure function wðq2Þ unless g ¼ 0. While the
denominators in the square brackets suggest that the
equation could contain collinear divergences, expanding
the integrand at these points shows that this is not the case.
All potential poles are canceled by zeros of the numerator.
It is straightforward to see that the system has a trivial

fixed point g� ¼ λ� ¼ w�ðq2Þ ¼ 0. Our primary interest is
in nontrivial fixed point solutions (g�; λ�; w�ðq2Þ) of
Eqs. (7) and (10) where, by definition, the couplings
become independent of k. Equation (7) entails that at such
a fixed point ηN ¼ −2. Substituting this value into Eq. (10),

one finds that the resulting fixed point equation is invariant
under a constant shift of w. Thus, the equation contains one
free parameter, which will be denoted by w∞. This freedom
constitutes an artifact of the conformally reduced approxi-
mation and does not persist once fluctuations of transverse-
traceless modes are included. In order to obtain the global
form of the structure function w�ðq2Þ, we first perform an
asymptotic expansion of Eq. (10) at infinite momentum.
This establishes the leading-order behavior

w�ðq2Þ ∼
q→∞

w∞ þ ρ

q2
þ � � � : ð11Þ

The parameter w∞ fixes the value of w�ðq2Þ at asymptoti-
cally large momenta, and ρ is a regulator-dependent
positive number.
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The system of fixed point equations can then be further
analyzed numerically. For this purpose, we resort to the
regulator RðzÞ ¼ e−αz. Importantly, this regulator is smooth
and leads to a rapid convergence when the threshold
integrals are evaluated numerically. All numerical values
and illustrations are obtained with α ¼ 1, and we checked
that all results are robust with respect to changing α.
Since the Einstein-Hilbert sector is independent of w,

its fixed point structure can be analyzed before solving
Eq. (10). It permits a non-Gaussian fixed point at
g� ¼ 0.374, λ� ¼ 0.285. This fixed point acts as an ultra-
violet attractor for the renormalization group flow in the
g − λ plane.
The global solution for w�ðq2Þ is then obtained through

pseudospectral methods [77,78] using rational Chebyshev
functions as a basis set [79,80]. This leads to the solution
shown in Fig. 2. This result has a number of remarkable
properties. First, the solution is globally well defined and
unique up to the constant w∞. The structure function
interpolates between a constant for low momenta and
the asymptotic behavior (11) for large momenta. The
crossover occurs for the dimensionless momentum
q2 ≈ 1. Second, the solution is positive definite for all
values w∞ > 0. This entails that the flat-space propagator
(5) has a single first-order pole at q2 ¼ 0. In particular,
there are no additional poles for q2 > 0. While it would be
interesting to extend the analysis of the pole structure to the
complex plane, this is beyond the scope of this Letter.
Third, the propagator grows polynomially only for asymp-
totically large momenta, indicating that the resulting theory
is actually local. For the asymptotic parameter, we find
ρ ≈ 0.0149.
Remarkably, the numerical solution can be parametrized

with very high precision by

wfit� ðq2Þ ≈
ρ

ρ
κ þ q2

þ w∞; κ ≈ 0.00817: ð12Þ

We expect that this analytic approximation will be very
useful when analyzing properties of the quantum theory in
the future.

The stability analysis should not be extended to structure
functions related to propagators. Conceptually, such struc-
ture functions ought to be considered as a part of a
momentum-dependent wave function renormalization.
The critical properties of these structure functions are thus
related to a momentum-dependent generalization of the
anomalous dimension rather than to the critical exponents;
see [63]. (We thank J. M. Pawlowski for discussion on
this point.)
Quantum-corrected Newtonian potential.—As a first

application of our computation, we calculate the quan-
tum-corrected Newtonian potential VTT

q ðrÞ by evaluating
Eq. (1) for the quantum-corrected flat-space propagator.
This requires reintroducing a scale in wðq2Þ. The analysis
[47,76,81,82] then indicates that k2 should be identified
with the observed value for Newton’s coupling G−1, which
implies that the transition displayed in Fig. 2 occurs at the
Planck scale. While this procedure may miss nonanalytic
contributions to wðq2Þ arising from integrating the renorm-
alization group flow to the infrared, it is clear that the fixed
point will control the short-distance behavior, so that we
can make reliable statements about this quantum-gravity-
dominated regime.
The central result is illustrated in Fig. 3. For distances

larger than the Planck scale, the classical and quantum
Newtonian potentials essentially coincide. For w∞ > 0, the
quantum corrections to the propagator remove the short-
distance singularity in the classical Newton potential,
however, such that limr→0VTT

q ðrÞ is actually finite. This
entails that the gravitational binding energy is bounded by
ETT
binding ¼ −VTT

q ðrÞjr¼0. The parameterization (12) then
allows us to compute this value

ETT
binding ¼

2

3w∞

1þ ρ
κ
ffiffiffiffiffiffiffiffi
xþx−

pffiffiffiffiffiffi
xþ

p þ ffiffiffiffiffi
x−

p Gm1m2; ð13Þ

where

FIG. 2. Fixed function w�ðq2Þ for w∞ ¼ 0 (orange, solid line).
The parameterization (12) is superimposed as a dashed line.

FIG. 3. Comparison of VTT
c ðrÞ (blue, dashed line) and VTT

q ðrÞ
obtained from the quantum-corrected propagator with w∞ ¼ 0.1
and m1 ¼ m2 ¼ G ¼ 1. For w∞ > 0, corrections to the high-
momentum behavior resolve the divergence in the classical case,
making the quantum-corrected potential VqðrÞ finite as r → 0.
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x� ¼ 1

4w∞κ

�
κ þ 2ðw∞ þ κÞρ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½κ þ 2ðw∞ þ κÞρ�2 − 8w∞κρ

q �
: ð14Þ

The classical analysis [83] establishes that the resolution of
the r ¼ 0 divergence is actually independent of the precise
form of the structure function. Generically, any positive
structure function will lead to complex mass poles which
ensure that ETT

binding is finite. Deriving the finiteness of VTT
c

from a first-principles computation is highly nontrivial and
constitutes a major test of the underlying quantum theory.
We expect that this will have drastic consequences for our
understanding of spacetime singularities also in more
general cases. In particular, it was argued in Ref. [84] that
complex mass poles in the gravitational propagator could
be associated with extended objects which could screen
spacetime singularities from being probed by physical
processes, thus leading to singularity avoidance in the
context of black hole physics.
Conclusions.—This work constitutes a major step

towards computing the quantum-corrected propagators in
asymptotic safety. The nonperturbative short-distance cor-
rections to the Newtonian potential shown in Fig. 3 outline
the path for resolving the spacetime singularities plaguing
classical gravity. This result differs from the perturbative
treatment of gravity as an effective field theory [19,20],
since the propagator underlying VTT

q ðrÞ is manifestly
nonperturbative. In principle, the modifications in the
Newtonian potential can be tested experimentally (see
[85] for a related discussion), even though probing
Newton’s law on Planckian scales is far beyond current
experimental possibilities.
Naturally, our findings bear a close connection to the

ghost-free, nonlocal gravity program [86–89] and to non-
commutative geometry [90–92], where structure functions
of the type (4) play a key role. In nonlocal, ghost-free
gravity, they constitute an input, defining the fundamental
action, while the noncommutative geometry approach
generates these terms through the nonlocal heat kernel.
In both cases, the structure function exhibits an exponential
falloff at momentum scales above the nonlocality scale. In
Refs. [93,94], this has been paraphrased as “high-energy
bosons do not propagate.” The result of our first-principles
computation differs qualitatively from these constructions,
as the quantum-corrected propagator arising from (10)
grows as q4 for large momenta. This suggests that these
approaches are in a different universality class than our
(microscopically) manifestly local theory.
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