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Béatrice Bonga,1 Huan Yang,1,2 and Scott A. Hughes3
1Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

2University of Guelph, Guelph, Ontario N2L 3G1, Canada
3Department of Physics and Kavli Institute for Astrophysics and Space Research,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 29 April 2019; published 6 September 2019)

We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances,
induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be viewed as a
general relativistic extension of the Kozai-Lidov resonances in Newtonian systems and is distinct from the
transient resonance already known for EMRI systems. Tidal resonances will generically occur for EMRIs.
By probing their influence on the phase of an EMRI waveform, we can learn about the tidal environmental
of the EMRI system, albeit at the cost of a more complicated waveform model. Observations by the Laser
Interferometer Space Antenna of EMRI systems therefore have the potential to provide information about
the distribution of stellar-mass objects near their host galactic-center black holes.
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Introduction.—Ground-based gravitational-wave (GW)
detectors have achieved tremendous success observing
merging stellar-mass black holes (BHs) and neutron stars.
At lower frequencies (around millihertz), the Laser
Interferometer Space Antenna (LISA) will probe binaries
involving massive BHs at the centers of galaxies [1].
One important source class for LISA are extreme mass-

ratio inspirals (EMRIs), stellar-mass objects (typically a
10–30 M⊙ BH) spiraling into a massive (∼105–107 M⊙)
BH in a galactic center. The large separation of mass scales
means that the stellar-mass object’s influence on the binary
may be approximated as a perturbation of the large BH’s
spacetime. These stellar-mass objects typically undergo
105–106 orbits near the large BH in the LISA frequency
band before finally plunging, providing a unique laboratory
for mapping the spacetimes of BHs and enabling precise
tests of strong-field gravity (see, e.g., [2] for a recent review).
In this Letter, we propose that GWobservations of EMRIs

can be used to probe the environmental tidal field generated
by stars and BHs near an EMRI system. The EMRI wave-
forms will encode information about the BH and stellar
distribution in galactic centers, which are difficult to obtain
with electromagnetic observations. We show that an envi-
ronmental tidal field introduces a new type of resonance
behavior, hereafter called “tidal resonance,” on the EMRI
waveform. This effect can be intuitively understood as the
general relativistic extension of the Newtonian Kozai-Lidov
resonance [3]. Tidal resonances are different from transient
resonances [4], which arise from the gravitational self-force.
BHs near EMRIs.—Galactic centers are crowded envi-

ronments. There are good theoretical reasons to expect
several 105 M⊙ in stellar-mass BHs inside the inner parsec
around a galaxy’s central BH [5,6] and there is (tentative)

observational evidence supporting this for our own Galaxy
[7]. Scattering processes can put stellar-mass objects (such
as stars and black holes) near enough to the massive BHs in
galactic centers for the object to be gravitationally bound to
the BH. Mean-motion resonance, in which a pair of stellar-
mass objects jointly migrates towards the massive black
hole until the resonant locking breaks down [8], can also
bring BHs close to the massive BH.
Currently, the distribution of stellar-mass objects nearby

massive BHs is not well known. Proper dynamical theory
calculations or N-body simulations are needed to compute
the distribution of stellar-mass objects near galactic-center
BHs and assess the distance of the outliers closest to the
central BH. Predictions based on a Fokker-Planck simu-
lation suggest that a population of 40 M⊙ BHs can be close
to Sagittarius A�, with a median distance ∼5 AU [9,10].
This is roughly consistent with the following simple
estimate for the distance of the closest BH, which mimics
an argument in [11]. The EMRI merger rate is about [12]
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where TEMRI is the interval between EMRI events, andM is
the mass of the central BH. Note that this estimate is subject
to significant model uncertainties. Assuming that orbit
decay is mainly driven by GW emission, at the time of
an EMRI the distance R to the next infalling BH (with
mass M⋆) can be estimated using
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R
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telling us that

R ∼ 4.3 AU
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�
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�
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�
0.45

; ð3Þ

with MSgrA� ¼ 4 × 106 M⊙ the mass of Sagittarius A�.
Although it is interesting that this estimate agrees with

[9,10], we emphasize that it is only meant to provide a
plausible case that a stellar-mass black hole can be close
enough for its tides to significantly influence an EMRI’s
orbital evolution. In particular, this estimate ignores the fact
that the tidal perturber’s orbit will surely be eccentric.
A critical point is that, because the tidal field scales as
M⋆=R3, the nearest outliers from a distribution of stellar-
mass black holes in the innermost regions of a galaxy (such
as discussed in [5–7]) will have the strongest impact,
significantly greater than the tides from another massive
BH at ∼0.1 pc (considered in [13]). The closest stellar-
mass BHs are likely to be the main contributors to the tidal
environment of EMRIs.
Tidal resonance.—An EMRI orbit deviates from BH

geodesic motion due to the gravitational self-force [14] and
the tidal field from nearby stars and BHs. The induced
acceleration by the tidal field is generally smaller than that
of the self-force. As we are interested in the EMRI motion
near the central massive BH, it is natural to apply BH
perturbation techniques [14] instead of post-Newtonian
simulations as was done in [11].
There is a two-timescale separation in the description

of EMRI orbital evolution [15]. This separation simplifies
the analysis, approximating the orbit at any moment as a
geodesic (with evolving integrals of motion) plus pertur-
bations. The fast timescale corresponds to the cyclic
motion, and the slow timescale corresponds to the secular
change of conserved quantities by radiation reaction. As
Kerr geodesic motion is separable [16], it is convenient to
use action-angle variables qr;θ;ϕ to describe the motion in
ðr; θ;ϕÞ
dqi
dτ

¼ωiðJÞþϵgð1Þi;tdðqϕ;qθ;qr;JÞþηgð1Þk;sfðqθ;qr;JÞ
þOðη2;ϵ2;ηϵÞ;

dJi
dτ

¼ ϵGð1Þ
i;tdðqϕ;qθ;qr;JÞþηGð1Þ

i;sfðqθ;qr;JÞþOðη2;ϵ2;ηϵÞ:
ð4Þ

The action variables J ≔ fJr; Jθ; Jϕg are functions of the
energy E, angular momentum along the symmetry axis Lz
and the Carter constant Q; η is the EMRI mass ratio, and
ϵ ≔ M⋆M2=R3 characterizes the strength of the tidal field
produced by the third body M⋆. The parameter τ is the

proper time of the inspiraling body. The terms Gð1Þ
i and gð1Þi

force the orbit away from geodesic motion. Terms with
subscript “td” are from the tidal force and depend upon the

axial angle ϕ and the third body M⋆; terms with subscript
“sf” are from the self-force (generated by gravitational
radiation reaction) and do not depend on ϕ and M⋆.
Without the self-force and the tidal force, J would be
conserved quantities and qi would increase at a fixed rate
in time.

Focus now on the tidal force Gð1Þ
i;td and drop the subscript

td. We write this term in the frequency domain

Gð1Þ
i ðqϕ; qθ; qr; JÞ ¼

X
m;k;n

Gð1Þ
i;mknðJÞeiðmqϕþkqθþnqrÞ; ð5Þ

with m, k, n integer. Over the total duration of the EMRI
inspiral (∝ M=η), the dissipative part of the self-force (∝ η)
changes the conserved quantities by a fractional amount of

order unity. In Gð1Þ
i , the exponential in qϕ;θ;r generally

oscillates in time, so a typical mode with nonzero m, k, n
will vanish after orbit averaging and, consequently, does
not contribute to secular changes of conserved quantities.
However, in special cases one can have

ωmkn ≔ mωϕ þ kωθ þ nωr ¼ 0; ð6Þ

so that the exponential does not oscillate. If the corre-
sponding force amplitude Gi;mkn is nonzero, this mode will
induce a secular change in J. This is the tidal resonance. By
Eq. (4), both J and ωiðJÞ change at the radiation reaction
timescale M=η. The tidal resonance is thus transient
because of the orbit’s inspiral. However, it occurs under
more general conditions than the transient resonance of the
gravitational self-force [4], which requires kωθ þ nωr ¼ 0.
Transient resonances have been shown to occur for generic
EMRIs [17,18]; the same conclusion should apply for tidal
resonances since its resonance condition is more general.
Moreover, tidal resonances will exist for low eccentricity
orbits, whereas the transient resonance may be unimportant
for many LISA EMRI sources due to low eccentricity [19].
The tidal resonance induces a change in J. Defining

τ ¼ 0 as the moment of resonance, and expanding qi
around this point as qi0 þ ωi0τ þ _ωi0τ

2 þOðτ3Þ, this
change across the resonance is well approximated by [4]

ΔJi ¼ ϵ

Z
∞

−∞
Gð1Þ

i ðqϕ; qθ; qr; JÞdτ

¼ ϵ

η1=2

X
s

ffiffiffiffiffiffiffiffi
2π

jΓsj

s
exp

�
sgnðΓsÞ iπ

4
þ isχ

�
Gð1Þ

i;sm sk sn;

ð7Þ

with χ ≔ mqϕ0 þ kqθ0 þ nqr0, s is a nonzero integer, and
Γ ≔ m _ωϕ0 þ k _ωθ0 þ n _ωr0; terms with s ¼ �1 dominate.
All quantities are evaluated at resonance. As ΔJ is propor-
tional to ϵ=η1=2, the accumulated phase shift over 1=η
inspiral cycles is proportional to ϵ=η3=2.
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In Eq. (7), we ignore changes of the external tidal field
during the resonance. This is valid if the orbital period of
the perturbing third body, T td ∼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
R3=M

p
, is much longer

than the resonance’s duration, Tres ∼ 1=
ffiffiffiffiffiffi
ηΓ

p
. When this

holds, the tidal field is effectively static during the
resonance. It is possible that the third body is so close
to the EMRI that T td ≲ Tres. In such a case, if the third
body’s orbit is near the EMRI’s equatorial plane and has
azimuthal frequency Ωϕ, we only need to correct qϕ0

: the
tidal resonance is shifted to mðωϕ∓ΩϕÞþkωθþnωr¼0

(upper sign for prograde motion of the third body, lower for
retrograde). Because Ωϕ ≪ ωϕ, such a resonance is
dynamically the same as in the T td ≫ Tres case, but is
evaluated at a slightly different frequency. In the most
general setting, Gi must include the motion of the third
body or the time dependence of the tidal field in Eq. (7).
To evaluate Gi, we need the perturbation hαβ to the

central BH’s spacetime due to the tidal field. This is found
by solving Teukolsky’s equation [20] in the slow motion
limit followed by metric reconstruction [21]. For simplicity,
we put the tidal perturber on the (x-y) equatorial plane and
only consider its quadrupolar nature (the dipolar perturba-
tions induced are zero), with the massive BH spin along the
z axis [22]. As we will see, this restricts the type of
resonances encountered. Specifically, we choose as the
tidal moment tensor Eab¼ðM⋆=R3Þð2∇ax∇bx−∇ay∇by−∇az∇bzÞ, where x, y, and z describe the motion of the
perturbing third body in Cartesian-like coordinates (see
Sec. IX B of [23]). We substitute this in Eqs. (7), (45), and
(46) of [21] to obtain hαβ in the ingoing radiation gauge in
advanced Eddington-Finkelstein coordinates [24]. Next, we
perform a coordinate transformation to Boyer-Lindquist
coordinates. Given hαβ, we can compute the induced
acceleration with respect to the background Kerr spacetime

aα ¼ −
1

2
ðgαβKerr þ uαuβÞð2hβλ;ρ − hλρ;βÞuλuρ; ð8Þ

with uα the unit vector tangent to the worldline of the
EMRI’s small mass μ. The corresponding instantaneous
change rates of the integrals of motion are [13]

dLz

dτ
¼ aϕ; ð9Þ

dQ
dτ

¼ 2uθaθ − 2a2cos2θutat þ 2cot2θuϕaϕ: ð10Þ

The energy E is conserved as the spacetime is assumed to
be stationary during the resonance.
Sample evolutions.—To illustrate the tidal resonance and

to estimate its impact on the phase of an EMRI waveform,
we consider three different scenarios summarized in Table I
and Fig. 1. In all these scenarios, the EMRI crosses a tidal
resonance with m∶k∶n ¼ −2∶2∶1 [25].

After orbit averaging, the sum in Eq. (5) is

hGð1Þ
i ðqϕ; qθ; qr; JÞi ≈Gð1Þ

i;−2;2;1ðJÞe−2iqϕ0 þ c:c: ð11Þ

With Gð1Þ
i;−2;2;1, we compute ΔQ;ΔLz as a function of χ

using Eq. (7). For this, we also need Γ, which we calculate
assuming that the main evolution of the orbit is due to GW
dissipation. Within this approximation [26,27],

�
_Jr
η
;
_Jθ
η
;
_Jϕ
η

�

¼ −
X
lmkn

ðn; k; mÞ
2ω3

mkn

ðjZ̃out
lmknj2 þ αlmknjZ̃down

lmkn j2Þ; ð12Þ

where the coefficient αlmkn, the asymptotic Teukolsky wave
amplitude at infinity Z̃out

lmkn and at the horizon Z̃down
lmkn are

defined in [28,29]. For a given resonance, we compute the
wave amplitudes and αlmkn by solving the Teukolsky
equation in the frequency domain, with a source term
associated with the stellar-mass object’s orbital motion at
frequencies ðωr;ωθ;ωϕÞ. Our code agrees very well with
other Teukolsky equation solvers [28].
For the a ¼ 0.99 initial conditions, Tres ∼ ðηΓÞ−1=2 ∼

14η−1=2M and the ratio between Tres and T td is

FIG. 1. Average change rate of the Carter constant (solid,
blue) and angular momentum along the z direction (dashed,
red) as a function of qϕ0 for the case with a ¼ 0.99 (see Table I).
Both hdQ=dti and hdLz=dti are normalized by ϵ to remove
the associated linear dependence and powers of M to be
dimensionless.

TABLE I. Three prograde orbital motions. Figure 1 shows the
dependence on qϕ0, which has the same functional form for all
three cases.

aa rmin rmax θmin
b _Q−2;2;1 _Lz−2;2;1

0.7 3.5 5.162 803 3 π=3 1.66þ 2.27i −0.35 − 0.47i
0.9 3 6.615 972 6 π=4 6.60þ 7.70i −1.72 − 2.01i
0.99 3 5.371 812 0 π=4 4.46þ 3.43i −1.23 − 0.95i
aDimensionless spin of the central BH.
bθmin ¼ π − θmax.
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Tres

T td
∼ 1.2

�
μ

10 M⊙

�
−1=2

�
M

MSgrA�

�
2
�

R
4.3 AU

�
−3=2

; ð13Þ

where μ is the mass of the small inspiraling body. These
timescales are comparable for this example, so we are in the
regime Tres ∼ T td and must shift the resonance (including
Ωϕ in the resonance condition), as compared to the
static perturber approximation. Since Ωϕ=ωϕ ∼ 7.1×
10−3ðr=4MSgrA�Þ3=2ðR=4.3 AUÞ−3=2, this shift is negligible
in evaluating the resonance strength.
Impact on orbital phase.—To estimate the effect of tidal

resonances on the phase of GW waveforms, we evolve two
orbits starting at the point of tidal resonance considered in
Fig. 1, one with and one without ΔJi included. This
evolution is realized with the orbit-averaged fluxes in
Eq. (12) evaluated at each time step computed with the
Teukolsky code, which in turn are used to update Jr, Jθ, Jϕ
and subsequently E;Q; Lz in time. At each time, we
compare ωϕ. Its difference is plotted in Fig. 2. To estimate
the deviation in orbital phase caused by the tidal resonance,
we evaluate (cf., Fig. 2)

ΔΨ ≔
Z

Tplunge

0

2Δωϕdt

¼ 1.4

�
μ

10 M⊙

�
−1=2

�
M

MSgrA�

�
7=2

×

�
M�

10 M⊙

��
R

4.3 AU

�
−3
; ð14Þ

where Tplunge is the time of the plunge after the tidal
resonance; in this example, Tplunge ≃ 0.78ðM=MSgrA� Þ yr.
The factor of 2 in Eq. (14) is because the strongest GW
harmonic is them ¼ 2mode. For systems withR≲ 4.3 AU
[as examined in Eq. (3)], the time until plunge is ∼R4

[cf., Eq. (1)]. As such, the fraction of the population under-
going tidal resonances scales as ðR=4.3 AUÞ4. However, it is
important to note that the effect should be generally smaller
for lighter massive BHs with less number of EMRI inspiral
cycles.
To estimate the phase resolution of EMRI measurements,

we adopt the Fisher-information analysis presented in
[30,31]. The statistical phase uncertainty roughly scales
as

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
=SNR, whereD is the number of intrinsic source

parameters in the waveform, and SNR is the measured
signal-to-noise ratio. By the Monte Carlo study of [32], the
number of EMRIs detected by LISA is likely to be
Oð10Þ–Oð103Þ per year at a SNR detection threshold of
20. As SNR roughly scales as 1=d (with d distance to
Earth) and the number of sources per unit distance scales as
d2, we can estimate the average SNR of detected events to
be∼30. We thus roughly estimate the phase resolution to be
ΔΨ ∼ 0.1. This suggests that the phase shift estimated in
Eq. (14) should be easily detectable. A significant fraction
of EMRIs are likely to experience tidal resonances that
induce ΔΨ ≥ 0.1. Even if this holds for only 10% of EMRI
events, this corresponds to Oð1Þ–Oð100Þ events per year.
The above estimate is based on a particular resonance for

a single EMRI orbit. A more rigorous calculation should
survey a generic distribution of EMRI parameters and the
mass and spin distribution of all host BHs. It will also be
important to include the influence of other signals which
are simultaneously “on” during LISA observation, such as
massive black hole inspirals, close white dwarf binaries in
our Galaxies, and other EMRI events which are being
observed contemporaneously. Most EMRI evolutions will
cross multiple tidal resonances before plunge, as shown by
the red dots in Fig. 2. At early times, there are several
resonances with duration comparable to the initial reso-
nance that may contribute a comparable phase shift. Many
short-lived tidal resonances cluster before the plunge due to
the EMRI’s rapidly changing orbital frequencies. Although
their individual influence on the orbital phase is likely to be
small compared to the initial resonance, there are many
contributions. These late resonances may also overlap,
yielding collective effects.
Discussion.—Similar to the Newtonian Kozai-Lidov

effect, close orbits in a Kerr spacetime satisfying Eq. (6)
can be resonantly excited by an external tidal field, resulting
in a secular shift in its orbital angular momentum [33].
EMRIs and tidal disruption events arise from the stellar
clusters around massive BHs, and it has long been discussed
that population studies of these events can be used to
understand cluster properties and the growth history of
massive black holes [2,34–36]. Tidal resonancewill enhance

FIG. 2. Evolution of the difference in ωϕ between inspirals with
and without resonant ΔJi (blue curve), and illustration of
resonances encountered during inspiral (dots). We take the central
black hole to have M ¼ MSgrA� ; both the inspiraling body μ and
the perturbing tidal source M� are 10 M⊙, and the tidal source is
at separation R ¼ 4.3 AU. The orbits start at the resonance point
qϕ0 ¼ 0.33 in Fig. 1; the final time is the plunge. Red and blue
dots show the resonance duration Tres for resonances with
fjmj; jkj; jnjg ≤ 5; blue dots indicate m ¼ �2. (The right-hand
vertical axis has the same scale as the left.) The tightly bunched
dots in the lower right illustrate how the system passes rapidly
through multiple tidal resonances in quick succession as plunge is
approached. (Inset) The associated accumulated phase shift.
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what is learned from EMRI events, providing additional data
about other massive objects near galaxy centers, essentially
probing the outliers of the stellar-mass distribution in these
clusters. This information will come at the cost of a more
complicated EMRI waveform model. Much effort is cur-
rently going into making accurate self-force-based EMRI
models, iterating in perturbation theory to second order in the
mass ratio and including effects like the impact of the smaller
body’s spin. Tidal resonances—if not carefully modeled for
—mayultimately limit theprecision towhich it isworthwhile
to make these waveform models. When testing general
relativity (GR) with EMRI observations in LISA, it is
important not tomisattribute environmental effects as signals
of GR violation.
The Mathematica notebooks used for these calculations,

including the metric perturbation and computation of Gi,
are available upon request.
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