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The contact process is a paradigmatic classical stochastic system displaying critical behavior even in one
dimension. It features a nonequilibrium phase transition into an absorbing state that has been widely
investigated and shown to belong to the directed percolation universality class. When the same process is
considered in a quantum setting, much less is known. So far, mainly semiclassical studies have been
conducted and the nature of the transition in low dimensions is still a matter of debate. Also, from a
numerical point of view, from which the system may look fairly simple—especially in one dimension—
results are lacking. In particular, the presence of the absorbing state poses a substantial challenge, which
appears to affect the reliability of algorithms targeting directly the steady state. Here we perform real-time
numerical simulations of the open dynamics of the quantum contact process and shed light on the existence
and on the nature of an absorbing state phase transition in one dimension. We find evidence for the
transition being continuous and provide first estimates for the critical exponents. Beyond the conceptual
interest, the simplicity of the quantum contact process makes it an ideal benchmark problem for
scrutinizing numerical methods for open quantum nonequilibrium systems.
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Introduction.—Understanding the nonequilibrium behav-
ior of many-body quantum systems is one of the major goals
of current research in physics. From the experimental side,
recent technological developments and increased capabilities
in the realization and control of quantum systems offer
promising platforms for the investigation of quantum phe-
nomena far from equilibrium [1–12]. However, from a
theoretical perspective, nonequilibrium quantum systems
are typically much more complex than classical ones and
their characterization is still an open problem, especially
when going beyond the realm of exactly solvable models or
the application of semiclassical approaches [13–20]. Even
numerical studies, which in the classical case allow for the
accurate investigation of nonintegrable systems, in quantum
settings are often severely limited due to computational
constraints.
A paradigmatic example—illustrating the gap in our

understanding of classical and quantum nonequilibrium
systems—is the “contact process”. A contact process model
deals with a d-dimensional lattice system, whose sites can
be either empty or occupied by a particle. In a classical
setting, the dynamics is given by two incoherent processes:
(i) self-destruction, consisting of spontaneous particle
decay, and (ii) branching (coagulation), for which an empty
(occupied) site can become occupied (empty) only if at
least one particle is present in the neighboring sites
[cf. Fig. 1(a)]. The nonequilibrium behavior resulting from

these dynamical rules has been widely investigated, as it is
relevant for, e.g., epidemic spreading or growth of bacterial
colonies [21–23], and these systems exhibit second-order
absorbing state phase transitions, which belong to the
directed percolation (DP) universality class [24–26].
An interesting situation emerges when branching and

coagulation are promoted from probabilistic to coherent
processes, see Fig. 1(b). Little is known in this quantum
regime. Understanding such minimal model of a quantum
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FIG. 1. Classical vs quantum dynamics. (a) Trajectory with
incoherent branching (coagulation) process: an empty (occupied)
site can become occupied (empty) if at least one of the
neighboring sites is occupied. Within a given trajectory, sites
are either empty or occupied. (b) Trajectory of the quantum
process, where branching (coagulation) is driven coherently by a
Hamiltonian. Superposition of different configurations is gen-
erated within a single trajectory and the density hence assumes
values that are in between zero and one.
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nonequilibrium dynamics is thus certainly of substantial
academic interest. A further aspect making this model so
appealing is that it can be realized on recently developed
quantum simulators based on Rydberg atoms [27–29].
Using mean-field theory approximations, i.e., neglecting
correlations among sites, it was found that the absorbing
state phase transition of the contact process survives in the
quantum regime [30–32]. However, these results also
suggest that the transition is of first order for any lattice
dimension. This contradicts the common belief that discon-
tinuous transitions should not occur in generic nonequili-
brium1D systemswith fluctuating ordered phases [33] and a
softening of the transition into a second-order one has been
conjectured [34]. This clearly shows that efforts to capture
the physics of the quantum contact process must go beyond
semiclassical approaches and use techniques that leave
quantum correlations between different sites intact.
In this Letter, we conduct a detailed investigation of the

1D quantum contact process (QCP) and make substantial
steps towards a comprehensive understanding of the critical
behavior of this challenging quantum nonequilibrium
problem. Applying the infinite time-evolving block deci-
mation (ITEBD) algorithm, we find evidence for a con-
tinuous nonequilibrium phase transition. We also establish
an estimate for the location of the critical point and provide
estimates for the critical exponents, which suggest that the
universality class is in fact different from that of (classical)
directed percolation.
The model.—To model the QCP for a finite-size system,

we consider a chain of L sites with open boundaries.
Attached to each site there is a two-level system with basis
fj•i; j∘ig, representing occupied and empty sites, respec-
tively. The evolution of the quantum state ρðtÞ is governed
by Lindblad generators [35–38], _ρðtÞ ¼ L½ρðtÞ�, with
L½ρ� ¼ −i½H; ρ� þD½ρ�. The purely dissipative contribu-
tion to the dynamics D½ρ� encodes the (classical) sponta-
neous particle decay (j•i → j∘i)

D½ρ� ¼ γ
XL

k¼1

�
σðkÞ− ρσðkÞþ −

1

2
fnðkÞ; ρg

�
; ð1Þ

where σ−j•i ¼ j∘i, σ−j∘i ¼ 0, and σþ ¼ σ†− are the ladder
spin operators, while n ¼ σþσ− is the number operator. The
Hamiltonian H, instead, encodes the coherent version of
the branching and coagulation processes and has the form
[30,31,34] (with σ1j • =∘i ¼ j∘=•i)

H ¼ Ω
XL−1

k¼1

ðσðkÞ1 nðkþ1Þ þ nðkÞσðkþ1Þ
1 Þ: ð2Þ

The structure of this Hamiltonian is such that the state of a
site can (coherently) evolve only if at least one of the
neighboring sites is occupied.
By construction, the vacuum state ρ0 ¼ j0ih0j, with

j0i ¼⊗L
k¼1 j∘i, is a steady state of the open system

dynamics. This is an absorbing state, characterized by zero
dynamical fluctuations. In the classical contact process, an
additional steady state can emerge in the thermodynamic
limit and for sufficiently large values of the branching rate.
This state has a finite density of particles, and at a critical
branching rate one observes a nonequilibrium absorbing
state phase transition, which belongs to the DP universality
class [24–26].
Numerical methods.—The numerical simulation of

quantum dissipative dynamics remains a major challenge
[39–46]. Exact diagonalization of the Lindblad generator is
limited to small systems for which the transition in the QCP
cannot be detected. To study larger systems [47,48], one
needs to resort to approximate representations of the
quantum state, e.g., through matrix product states (MPSs)
[49,50]. A possible way to study a nonequilibrium phase
transition is thus offered by MPS techniques targeting the
steady state of the dynamics [51,52]. However, in the case of
nonequilibrium phase transitions, universal information is
also contained in the dynamics itself. Furthermore, for our
model, we observe that these methods struggle to pinpoint
the transition, as they tend to be biased towards the
uncorrelated (absorbing) steady state ρ0 in any parameter
regime. For these reasons, we run real-time dynamical
simulations by means of time-evolving block decimation
algorithms [53–56], working in the thermodynamic limit
(ITEBD). These simulations directly implement the open
system dynamics in Liouville space [57,58]. Their accuracy
is limited by a finite bond dimension χ in the approximation
of the evolved state. Nonetheless, this strategy currently
seems to be the only one possible, among existing algo-
rithms, to study the QCP. For our simulations, we used
different Trotter schemes with time steps (time is given in
units of γ−1, throughout), 0.01 ≤ dt ≤ 0.1, and χ ≤ 1300,
reaching simulation times t ≈ 50 on standard PCs.
Nonequilibrium phase transition.—As a first step, we

establish the existence of an absorbing state phase tran-
sition in the QCP and estimate the location of the critical
point Ωc. The order parameter is the average number of
particles, nðtÞ ¼ L−1P

kTr½ρðtÞnðkÞ�, which is zero in the
absorbing phase, Ω < Ωc, and nonzero in the finite-density
phase, Ω > Ωc.
To establish these phases numerically, we estimate the

quasistationary density nqs by using the approximation of
nðtÞ obtained from the ITEBD simulations for sufficiently
large values of t where the density is approximately
stationary, see Fig. 2(a). With a bond dimension of
χ ≤ 800, we can establish convergence of nðtÞ up to
Ω ≈ 3 [see Fig. 2(b)]. For these values, we find that the
density nðtÞ decays exponentially to zero and nqs ≈ 0.
Thus, this region belongs to the absorbing phase. For larger
Ω it becomes challenging to establish convergence (see
discussion further below). However, when Ω ≥ 8, it again
becomes possible to approximate nqs with χ ≤ 800. The
density nqs is found to be nonzero, which establishes the
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existence of an active phase and pins down the phase
transition region to the interval 3 < Ωc < 8. Here long
relaxation times together with the concomitant buildup of
entanglement and quantum correlations require a large
MPS bond dimension for establishing convergence. This is
visible in the stationary density displayed in Fig. 2(b),
whose shape is suggestive of a second-order phase tran-
sition, smoothed by finite-time effects.
The different phases of the QCP become also visible in

single dynamical realizations starting from a single seed,
displayed in Fig. 2(c). In the absorbing phase, the seed
creates a small cluster that does not spread and rapidly dies.
In the active phase, instead, the branching process is
dominant and the initial seed spreads, populating the whole
system. In the critical region, a contained propagation can be
observed, and the density still tends to zero for later times.
Critical behavior and exponents: Universal dynamics.—

We start the analysis of the critical region by studying
dynamical observables. The location of the critical pointΩc
can be established by analyzing the time evolution of nðtÞ,
as shown in Fig. 2(a): the concavity of this curve, in a log-
log plot, can indicate whether the corresponding Ω is
supercritical (positive concavity) or subcritical (negative
concavity). This allows us to improve the estimate for Ωc,
particularly when combined with the observation that the
finite bond-dimension effects consistently lead to an

artificial saturation of nðtÞ at a finite value [cf. Figs. 2(a)
and 2(b)]. Therefore, once a value of Ω is established to be
in the absorbing phase for some χ, we can be confident that
it is also so as χ → ∞. This makes it possible establish a
lower bound on Ωc by simply taking the highest χ
simulations available and checking which nðtÞ curves lie
in the inactive phase. Of course, this also means that
establishing an upper bound is more challenging and from
analyzing our data we conclude that Ωc must be in the
range Ωc ∈ ½5.95; 7�.
Under the assumption of a second-order absorbing state

phase transition, the order parameter is expected to follow
the universal scaling relation [26]

nðtÞ ≈ t−δf(ðΩ −ΩcÞt1=νk); ð3Þ

where δ and νk are critical exponents and f is a universal
scaling function. The exponent νk is related to the diver-
gence of the time correlations, while δ determines the
critical algebraic decay of the density, nðtÞ ≈ t−δfð0Þ, for
Ω ¼ Ωc. To obtain an estimate for the critical point Ωc we
search for the nðtÞ curve showing algebraic decay [see
critical regime in Fig. 2(a)]. This is done by defining an
effective exponent [26]

δeffðtÞ ¼ −
1

log b
log

nðtbÞ
nðtÞ ; ð4Þ

and identifying the Ω value for which δeffðtÞ is as close as
possible to a constant. In this way, as is shown in Fig. 3(a),
we can recover our best estimate both for the critical rate
Ωc ≈ 6 and for the exponent δ ≈ 0.36. To provide bounds
on the latter value, we extrapolate an algebraic behavior
from a converged (in bond dimension) subcritical curve and
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FIG. 2. Infinite-system simulations. (a) Log-log plot of the
density nðtÞ. For Ω ¼ 2 (bottom curves with χ ¼ 50, 100, 200), a
rapid convergence to an exponentially decaying curve is ob-
served. For Ω ¼ 10 (top curves with χ ¼ 200, 400, 800) instead,
a convergence to a stationary finite density curve is shown.
Curves in the middle are for Ω ¼ 6: here, larger bond dimensions
(χ ¼ 350, 1000, 1300) are needed because of entanglement and
correlation growth in the MPS close to criticality. (b) Quasista-
tionary density nqs (taken at t ¼ 20): its dependence on Ω seems
to suggest a continuous transition. (c) Finite-system simulations.
L ¼ 50 and χ ¼ 300. Density plot of the site-resolved average
density for representative quantum trajectories starting from a
single seed. The initial state is the one with a single occupied site.
Times and rates are in units of γ−1 and γ, respectively.

FIG. 3. Determination of δ exponent from infinite-system
simulations. (a) Plot of the effective exponent δeffðtÞ of
Eq. (4), with b ¼ 4. For Ω ¼ 5.95, the exponent increases at
later times signaling that the curve is subcritical; this provides a
lower bound for Ωc. On the contrary, Ω ¼ 6.05 looks supercriti-
cal. For Ω ¼ 6, we observe an almost constant behavior; we thus
consider Ωc ≈ 6. The dashed line guides the eye to the value
δ ¼ 0.358, obtained by averaging the latter curve for t ∈ ½1.5; 3�.
(b) An uncertainty range for δ is obtained by extrapolating an
algebraic behavior from two converged (in χ) curves bounding
Ωc. The fit is performed for t ∈ ½1; 2�, providing δ ∈ ½0.28; 0.44�.
Times and rates are in units of γ−1 and γ, respectively.
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a supercritical one: taking Ω ¼ 4 to be the subcritical and
Ω ¼ 8 to be the supercritical one, as shown in Fig. 3(b), we
obtain δ ¼ 0.36� 0.08.
The dynamical scaling relation (3) also implies that

plotting nðtÞtδ as a function of tjΩ − Ωcjνk should yield a
collapse of all curves into two master curves, depending on
whether the value of Ω is above or below critical. Figure 4
indeed shows such a collapse. This allows us to estimate
νk ≈ 1 and is a further hint towards the continuous nature of
the phase transition.
Critical behavior and exponents: Steady-state

universality.—Estimates for static critical exponents are
obtained by analyzing the density nqs [Fig. 2(b)] and the
spatial correlation length ξ⊥ near the critical point. These
quantities are expected to behave as nqs ≈ jΩ −Ωcjβ and
ξ⊥ ≈ jΩ − Ωcj−ν⊥ , respectively, defining the critical expo-
nents β and ν⊥.
The determination of static exponents is more challeng-

ing than that of the dynamical ones, as it requires a large
number of simulations up to long times. Additionally, while
the exponent δ can be bound easily from a single active and
inactive realization of nðtÞ [Fig. 3(b)], the values of β and
ν⊥ are extracted from fits that are highly sensitive to the
considered region of Ω values. The determination of ν⊥ is
particularly demanding, as the correlation length consti-
tutes a nonlocal observable, which is computed from the
asymptotic behavior of the density-density correlation
function CðrÞ ¼ hnðrÞnð0Þi − hnð0Þi2 ∼ e−r=ξ⊥ . In the vicin-
ity of critical points in second-order phase transition, where
long-range correlations are expected, such nonlocal observ-
ables are difficult to approximate, since MPSs only support
a maximal correlation length set by the bond dimension.
To determine β, we investigate the range Ω ≈ ½5; 7�,

performing a power-law fit with β and Ωc treated as free
parameters, see Fig. 5(a). As χ is increased, the estimate of

Ωc is shifted to higher values, which is consistent with the
artificial saturation of the density due to a finite bond
dimension. Our estimate for the exponent is β ¼ 0.39�
0.08, with error given by the largest distance of the estimate
from lower bond-dimension results. This is compatible with
the value of β obtained assuming the validity of a standard
scaling relation for absorbing state phase transitions
[26]: β ¼ δνk ≈ 0.36.
Figure 5(b) displays the behavior of the correlation length

ξ⊥ as estimated from the density-density correlation func-
tion. All data are consistent with a power-law behavior. Near
the critical point, the correlation length systematically
increases with increasing bond dimension. This suggests
that, for a large enough χ, one should be able to observe,
close to criticality, diverging correlation lengths as expected
in continuous transitions. However, our data are strongly
affected by finite bond dimensions: near the critical point,
the correlation length rounds off instead of diverging. This is
because a finite bond dimension enforces a finite correlation
length. This, in turn, means that we cannot provide a precise
estimate of the exponent ν⊥. As a reference value, we can fit
our results as done for obtaining β—in this case, neglecting
the points showing a rounding of the divergence—which
yields ν⊥ ¼ 0.5� 0.2 (see Supplemental Material [59]).
Summary and conclusions.—We have found strong

evidence of a continuous absorbing state phase transition
in the 1D QCP. Estimates for the critical exponents are
summarized in Table I. As we exploited ITEBD algorithms,
our results are free of finite-size effects. The main limitation
arises from finite simulation times. Nevertheless, the
simulation times are sufficiently large to observe signatures
of critical scaling, which in particular in the case of the
exponent δ is not compatible with the DP universality class
in 1D. This finding is further corroborated by finite-size
simulations provided in the Supplemental Material [59].
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FIG. 4. Determination of νk exponent from infinite-system
simulations. Scaled average density nðtÞtδ as a function of
tjΩ − Ωcjνk for χ ¼ 1300. The critical values δ ¼ 0.36, νk ¼ 1,
and Ωc ¼ 6 collapse all curves into two master curves. The
detachment of the supercritical curves for long times from the
master one is likely a finite bond-dimension effect: low bond
dimensions appear to cause an artificial density saturation. Times
and rates are in units of γ−1 and γ, respectively.
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FIG. 5. Steady-state exponents (β, ν⊥) from infinite-system
simulations. Plots in log-log scale with Ω in units of γ.
(a) Extrapolation of β from the quasistationary density (taken
at t ¼ 40). Dashed lines are fits with power-law curves in the
range Ω ∈ ½5.5; 7�. We can estimate β ¼ 0.39� 0.08: the value is
obtained from the simulations with largest χ, while the error
is the maximal distance of this from lower bond dimensions.
(b) Correlation length ξ⊥: the behavior is consistent with second-
order phase transition as correlations increase in the critical
region. Fits are obtained by discarding the data showing a
rounding off of the correlations length due to finite χ effects.
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All exponents are, instead, remarkably close to those
predicted for the tricritical point of a mixed quantum and
classical contact process in 2D [31]. This might be a
coincidence or could be rationalized as follows: Buchhold
et al. [31] predicts a tricritical point for quantum and
classical branching, while a first-order transition for only
quantum branching. As there appears to be no first-order
transition in 1D, this could mean that quantum fluctuations
(to a large extent neglected in [31]) shift the tricritical point
onto the quantum axis—its occurrence does not require
classical branching. However, the mismatch in the dimen-
sion, i.e., 1D vs 2D, remains puzzling: this could indicate
that a classical field-theoretical description of the 1D QCP
requires an effective dimension d ¼ 2, as suggested by
preliminary comparisons of ITEBD results with finite-size
classical scaling theory [59].
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