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We study an interacting system of N classical particles on a line at thermal equilibrium. The particles are
confined by a harmonic trap and repel each other via pairwise interaction potential that behaves as a power
law ∝

P
N
i≠j jxi − xjj−k (with k > −2) of their mutual distance. This is a generalization of the well-known

cases of the one-component plasma (k ¼ −1), Dyson’s log gas (k → 0þ), and the Calogero-Moser model
(k ¼ 2). Because of the competition between harmonic confinement and pairwise repulsion, the particles
spread over a finite region of space for all k > −2. We compute exactly the average density profile for large
N for all k > −2 and show that while it is independent of temperature for sufficiently low temperature, it
has a rich and nontrivial dependence on k with distinct behavior for −2 < k < 1, k > 1 and k ¼ 1.
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Introduction.—A gas of N classical particles, confined
by a harmonic potential on a line and interacting with each
other via pairwise repulsion, constitutes one of the
simplest interacting particle systems that has been well
studied in the past. It has seen a recent revival in the wake
of the physics of cold atoms. When the pairwise repulsive
interaction decays as a power law of the distance between
the particles, the energy of the so-called Riesz gas [1] is
given by

EðfxigÞ ¼
1

2

XN
i¼1

x2i þ
JsgnðkÞ

2

X
i≠j

1

jxi − xjjk
; ð1Þ

where J > 0 and fxig (i ¼ 1; 2;…; N) denote the posi-
tions of the particles on the line. The index k > −2
characterizes the strength of the pairwise interaction
and sgnðkÞ in the prefactor ensures a repulsive interaction.
For k < −2, the quadratic potential is not strong enough to
counter the strong repulsion and confine the particles.
Consequently the particles fly off to �∞ and thus the
case k < −2 is not physically interesting. Given the energy
in (1), the joint probability distribution function (PDF)
of the particles’ positions is given by the Boltzmann
weight, Pðx1;…; xNÞ ¼ e−βE½fxig�=ZNðβÞ, where β is the
inverse temperature (kB ¼ 1) and ZNðβÞ ¼

R Q
N
i¼1

dxie−βE½fxig� is the normalizing partition function. The
harmonic potential tries to confine the particles near the
center of the trap, while the repulsive interaction tries to
push them apart. As a result of the competition between the
two terms, it turns out that the particles get confined to a
finite region of space for large N, with a space-dependent

averagemacroscopic density, hρNðxÞi¼N−1PN
i¼1hδðx−xiÞi

(normalized to unity), where h…i denotes an average with
respect to the Boltzmannweight. A basic natural question is
as follows: what is the configuration of xi ’s that minimizes
the energy in (1) for largeN andwhat is the density profile in
the ground state? This is a classic and important optimi-
zation problem both in physics (see below) and in math-
ematics (see, e.g., Refs. [2–4]) whose solution, for generic
k > −2, is hitherto unknown. A related question is as
follows: how does the average density profile depend on
the inverse temperature β?
This problem is of great general interest as there

are varied physical systems that correspond to special
values of k. We start with k ¼ −1 where the interaction
is linearly repulsive with distance. This is the well-known
one-dimensional one-component plasma (1D OCP) [5],
consisting of oppositely charged particles with pairwise
Coulomb interaction (linear in 1D) and overall charge
neutrality [6–10]. Integrating out the positions of the
negative charges gives rise to an effective quadratic con-
finement for the positive charges and the effective energy of
the N positive charges with coordinates fxig is precisely
given by (1) with k ¼ −1. In this case, the energy can be
easily minimized by ordering the positions of the particles
leading to an equispaced configuration [6–10]. Moreover,
for large N, the average density profile hρNðxÞi turns out to
be independent of β and approaches a scaling form
hρNðxÞi → ð1=NÞρ̃OCPðx=NÞ, where the scaled density
ρ̃OCPðyÞ ¼ 1=ð2JÞ is uniform over the interval ½−J;þJ�
and vanishes outside [3,6–11].
The second and perhaps the most well-studied example

corresponds to the limit k → 0þ, where we replace sgnðkÞ
in Eq. (1) by þ1, use jxi − xjj−k ≈ 1 − k log jxi − xjj, and
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set J ¼ 1=k. The energy in (1) then reduces, up to an
overall additive constant, to

E½fxig� ¼
1

2

XN
i¼1

x2i −
1

2

X
i≠j

ln jxi − xjj: ð2Þ

This is the celebrated log-gas of Dyson [12]. For the special
values of β ¼ 1, 2, and 4, the Boltzmann weight of the
Dyson's log gas PðfxigÞ ¼ f1=½ZNðβÞ�g exp½−βE½fxig��
can be identified with the joint distribution of N real
eigenvalues of an N × N matrix belonging to the Gaussian
ensembles of the random matrix theory (RMT): respec-
tively Gaussian orthogonal ensemble, Gaussian unitary
ensemble, and Gaussian symplectic ensemble [5,13].
Gaussian ensembles are the cornerstones of RMT with
myriad of applications, ranging from nuclear physics,
mesoscopic transport, quantum chaos, and number theory
all the way to finance and big-data science [5,13–15].
The Dyson’s log gas with arbitrary β > 0 also appears in
RMT as the joint PDF of the eigenvalues of the so-called
Dumitriu-Edelman β-ensemble of tridiagonal random
matrices [16]. The average density for large N converges
to the scaling form, independently of β,

hρNðxÞi ≈
1ffiffiffiffi
N

p ρ̃sc

�
xffiffiffiffi
N

p
�
; ρ̃scðyÞ ¼

1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − y2

q
: ð3Þ

Thus the scaled density is supported over ½− ffiffiffi
2

p
;þ ffiffiffi

2
p � and

is known as the celebrated Wigner semicircular law [17].
This central result of RMT has been instrumental in
understanding the global properties in a variety of systems
including growth models in 1þ 1 dimensions belonging to
the Kardar-Parisi-Zhang universality class [18], noninter-
acting trapped fermions [19–21] where the Wigner semi-
circle can also be obtained from the so-called local density
approximation [22], nonintersecting Brownian motions
[23–25], graph theory, and communication networks [14].
The third physical example corresponds to k ¼ 2, i.e.,

with inverse-square repulsion. For k ¼ 2, (1) is the cel-
ebrated Calogero-Moser model [26–29], which is inte-
grable and is ubiquitous in diverse fields [30]. Curiously, it
turns out that for any finite N, in the minimum energy
configuration of both the Dyson's log gas (k → 0þ) and the
Calogero-Moser model (k ¼ 2), the particle positions xi’s
coincide exactly [31,32] with the N zeros of the Hermite
polynomial of degree N. Consequently, for large N,
the scaled average density for k ¼ 2 also approaches the
Wigner semicircular law in Eq. (3) and as in the Dyson's log
gas case, the semicircular law is independent of β. This
is rather strange: even though the long-range repulsive
interaction in the Dyson's log gas is much stronger than that
of the inverse-square gas, the average density profile is
identical in the two cases. This raises a very interesting and
natural question: How does the shape of the average scaled
density for large N vary as one tunes the parameter k? The

appearance of the semicircular law both for k → 0þ and
k ¼ 2 suggests an intriguing possibility of a “nonmono-
tonic” dependence of the shape of the average density as
one tunes up k. This question on the dependence of the
average density on k also has practical implications in a
number of physical contexts. For example, in a typical cold
atom experimental setup, a quadratic confining potential is
natural due to the usage of optical laser traps. In addition, it
is possible to induce long-range power-law repulsive
interactions between such atoms. For instance, charged
particles interacting via the 3D Coulomb repulsion, but
confined to a line by highly anisotropic optical trap, would
correspond to k ¼ 1. Similarly, k ¼ 3 describes a dipolar
gas confined to 1D [33–35]. For k → ∞, the Riesz gas
reduces to a truly short-ranged repulsive gas similar to the
harmonically confined screened Coulomb or Yukawa gas
studied in Refs. [11,36]. In addition, other values of k have
either been realized in experimental setups or could
potentially be realized [37].
In this Letter, we address this interesting question of the

dependence of the average density on k and obtain exact
results for large N. We show that for large N the average
density is independent of β for all k (for sufficiently large β)
[38], but has a rich and nontrivial dependence on k. On
general grounds the average density is expected to have a
scaling form hρNðxÞi ≈ N−αk ρ̃kðx=NαkÞ for large N, where
Nαk corresponds to the typical scale of the position of the
particles in the trap. Indeed, we do find this behavior, but
with a twist. We show that there is a drastic change of
behavior of the exponent αk as well as the scaling function
ρ̃kðyÞ at k ¼ 1. For the exponent, we get

αk ¼
(

1
kþ2

; −2 < k < 1

k
kþ2

; k > 1:
ð4Þ

The scaling function ρ̃kðyÞ has a support over ½−lk=2;
þlk=2� and can be expressed as ρ̃kðyÞ ¼ l−1

k Fkðy=lkÞ,
where FkðzÞ is given by

FkðzÞ ¼
1

Bðγk þ 1; γk þ 1Þ
�
1

4
− z2

�
γk
; ð5Þ

with −1=2 ≤ z ≤ 1=2, and Bða; bÞ is the standard Beta
function. Thus the density either diverges or vanishes at the
two scaled edges z ¼ �1=2 with an exponent γk, which
also exhibits a change of behavior at k ¼ 1, namely,

γk ¼
(

kþ1
2
; −2 < k < 1

1
k ; k > 1:

ð6Þ

The support length lk is nonuniversal and depends
explicitly on k and the coupling strength J (for the exact
expressions of lk, see Eqs. (36) and (65) of Supplemental
Material [45]). The scaling function FkðzÞ depends only on

PHYSICAL REVIEW LETTERS 123, 100603 (2019)

100603-2



k, and is independent of β and J. The case k ¼ 1 is marginal
with additional logarithmic corrections (we discuss this
later). We show that this change of behavior at k ¼ 1 can be
traced back to the fact that, for k < 1, the large distance
behavior of the interaction term controls the large N
behavior of the density. In contrast, for k > 1, the limiting
density is determined by the short distance behavior of the
interaction term. This gives rise to an effective field theory
that is fundamentally different for k < 1 and k > 1. Thus
k → 0þ (Dyson's log gas) and k ¼ 2 (inverse-square gas)
share the same average density profile, but the physics is
rather different in the two cases. For k → −1, we recover
the flat density of the 1D OCP. Also, in the limit k → ∞ we
again get a flat density, consistent with the results for the
1D harmonically confined Yukawa gas [11,36]. We also
performed Monte Carlo (MC) simulations for several
values of k, finding excellent agreement with our analytical
predictions (see Fig. 1).
Regime 1: −2 < k < 1.—Assuming both terms in the

energy (1) are of the same order for large N, the energy
scale can be estimated as follows. Let the typical position of
a particle scale as xtyp ∼ Nαk for large N, where αk is to be
determined. Then the first term in (1) scales as ∼N2αkþ1,
while the second term [where the double sum contains
typically NðN − 1Þ ≈ N2 terms] scales as ∼JN2−kαk .
Demanding they are of the same order fixes the exponent
αk ¼ 1=ðkþ 2Þ [see the first line in Eq. (4)]. Hence the
total energy scales as E ∼ N2αkþ1 ∼ Nð4þkÞ=ð2þkÞ in this
regime. To find the configuration that dominates the
partition function ZNðβÞ for large N, we generalize the
method used for the Dyson's log gas (k → 0þ limit) [12,
48–50]. It turns out to be convenient to express the coarse-
grained energy in terms of a macroscopic density ρNðxÞ and

use the relation
P

N
i¼1 fðxiÞ ≈ N

R
fðxÞρNðxÞdx, valid for

any smooth function fðxÞ. Next, we rescale x ¼ Nαky with
y ∼Oð1Þ. Under this rescaling, the density transforms as
ρNðxÞ ≈ N−αk ρ̃kðy ¼ xN−αkÞ, where we assume ρ̃kðyÞ is
smooth and normalizable,

R
ρ̃kðyÞdy ¼ 1. Consequently,

the coarse-grained partition function for large N can be
expressed as a functional integral over the density field
ρ̃kðyÞ (for details see Supplemental Material [45]),

ZNðβÞ ∼
Z

dμ
Z

D½ρ̃k� exp ð−βN4þk
2þkΣ½ρ̃kðyÞ�Þ; ð7Þ

where the action Σ½ρ̃kðyÞ� is given by (see also Ref. [51] for
a rigorous proof in the cases 0 < k < 1)

Σ½ρ̃kðyÞ� ¼
JsgnðkÞ

2

Z
dy

Z
dy0

ρ̃kðyÞρ̃kðy0Þ
jy − y0jk

þ 1

2

Z
dyy2ρ̃kðyÞ − μ

�Z
dyρ̃kðyÞ − 1

�
: ð8Þ

Here μ is the Lagrange multiplier that enforces the con-
straint

R
ρ̃kðyÞdy ¼ 1. Note that in the integrand of Eq. (7),

we have only kept the leading order contributions to the
energy. Both the entropy term (generated in going from
microscopic configurations to the macroscopic density) as
well as the short distance behavior of the interaction energy
have been neglected, as they are of lower order in N for
−2 < k < 1. This is valid as long as β ≫ N−2αk where αk ¼
1=ðkþ 2Þ [38,45]. Thus the effective action Σ½ρ̃kðyÞ� is
manifestly nonlocal reflecting the long-range nature of
the repulsive interaction. We see later that this nonlocality
manifests only for −2 < k < 1. For large N, the partition
function in Eq. (7) can then be evaluated by the saddle point
method. Minimizing the action Σ½ρ̃kðyÞ� in (8) with respect
to ρ̃kðyÞ gives the saddle point equation for the optimal
density

y2

2
þ JsgnðkÞ

Z
dy0

ρ̃kðy0Þ
jy0 − yjk ¼ μ: ð9Þ

This equation is valid over the support of ρ̃kðyÞ. The density
is clearly symmetric in y; hence the support is over
½−lk=2;lk=2�, where lk is fixed using the normalizationR lk=2
−lk=2 ρkðyÞdy ¼ 1. Taking a further derivative of (9) with
respect to y leads to a singular integral equation

PV
Z

lk=2

−lk=2

sgnðy0 − yÞ
jy − y0jkþ1

ρ̃kðy0Þdy0 ¼ −
y

Jjkj ; k ≠ 0;

ð10Þ
where PV denotes the principal value, which needs to be
taken only for k > 0. Also, for k → 0, J has to be rescaled
such that Jjkj ¼ 1. Solving this singular integral equation
poses the main technical challenge. Fortunately, it turns out
that for −2 < k < 1, this equation can be transformed into
the well-studied Sonin form [52–58], and can subsequently

FIG. 1. The numerical (MC) average scaled density ρ̃kðyÞ vs y
(red dots) for different values of k: for −2 < k < 1 in the top three
panels and for k > 1 in the bottom three panels (where N ¼ 200
and β ¼ 2). The numerical curves are compared to analytical
predictions (black) with excellent agreement. Oscillations are
somewhat prominent at higher jkj due to the finite N effects. The
ensemble average is over 2 × 108 MC samples.
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be inverted to obtain ρ̃kðyÞ explicitly [45]. We then obtain
the exact saddle point density ρ̃kðyÞ ¼ l−1

k Fkðy=lkÞ, where
lk is given in Supplemental Material [45] and FkðzÞ is
given in Eq. (5) with γk ¼ ðkþ 1Þ=2. Note that the Sonin
inversion formula also indicates that there is no physical
solution (saddle point density) for k > 1. Hence, this solution
is valid only in the range −2 < k < 1. Furthermore, since β
appears only in the factor βNð4þkÞ=ð2þkÞ outside the action
Σ½ρ̃kðyÞ� in (7), it is clear that the saddle point density is
independent of β: largeN is equivalent to large β. In addition,
the average density hρNðxÞi, for large N, clearly coincides
with the saddle point density as the average over all possible
densities is dominated by the saddle point. In Fig. 1, upper
panels, we compare our theoretical predictions with MC
simulations for three representative values of k in the
range −2 < k < 1 and find excellent agreement. Note that
in the range −2 < k < −1 the density diverges at the edges
�lk=2, while for −1 < k < 1 the density vanishes at the
edges. Exactly at k ¼ −1, the density is flat, consistent with
the 1D OCP result.
Regime 2: k ≥ 1.—It turns out that, for k > 1, the

interaction term in (1) containing the double sum is
dominated by particles that are very close to each other,
i.e., almost nearest neighbors. As a result, the short distance
properties of the interaction term play a more dominant role
compared with their long distance behavior. This leads to
an effective field theory that is local in the density and is
much simpler. To compute the effective coarse-grained
energy for large N, we then take a different path than the
k < 1 case (for details see Supplemental Material [45]).
First, it is convenient to order the particle positions so that
xi increases with the label i [this is fine since the energy (1)
is invariant under permutation of labels]. We then replace
the discrete particle label i by a continuous coordinate and
the position xi is approximated by a smooth continuous
function xðiÞ. Next, we approximate xi − xj ≈ ði − jÞx0ðiÞ
where x0ðiÞ ¼ dxðiÞ=di and we have kept only the first term
in the Taylor expansion anticipating that it captures the
leading short distance behavior. Our next step is to express
x0ðiÞ in terms of the local smooth macroscopic density
ρNðxÞ (normalized to unity). In fact, the local slope of the
smooth function xðiÞ, i.e., x0ðiÞ > 0 is simply the inverse of
the number density NρNðxÞ, i.e., x0ðiÞ ¼ 1=½NρNðxÞ�. Thus
the double sum in (1) can be approximated, to leading order
for large N, by

P
i≠jjxi − xjj−k ¼

P
i≠jji − jj−k½NρNðxiÞ�k.

The sum over j, for fixed i, is convergent for all k > 1 and
simply gives a factor 2ζðkÞ, where ζðkÞ ¼ P∞

n¼1 n
−k is the

Riemann zeta function. Furthermore, the sum over i can be
replaced by an integral using the relation

P
N
i¼1 fðxiÞ ≈

N
R
fðxÞρNðxÞdx mentioned before. Using this relation

in both terms of (1) leads to a coarse-grained energy
E ≡ E½ρNðxÞ� [45],

E ≈
N
2

Z
dxx2ρNðxÞ þ JζðkÞNkþ1

Z
dx½ρNðxÞ�kþ1; ð11Þ

which is completely local in the density ρNðxÞ, unlike (8)
for −2 < k < 1 that involved densities at two space-
separated points. We then rescale x → xN−αk and write
ρNðxÞ ¼ N−αk ρ̃kðy ¼ xN−αkÞ. It is easy to see that for both
terms in (11) to be of the same order in N for large N, we
need to choose αk ¼ k=ðkþ 2Þ, as stated in the second line
of (4). Hence, the total energy scales as E ∼ N½ð3kþ2Þ=ðkþ2Þ�
for large N. The coarse-grained partition function ZNðβÞ
can then be written as

ZNðβÞ ∼
Z

dμ
Z

D½ρ̃k� exp ð−βN3kþ2
kþ2Σ½ρ̃kðyÞ�Þ; ð12Þ

where the action Σ½ρ̃kðyÞ� is given by

Σ½ρ̃kðyÞ� ¼
1

2

Z
dyy2ρ̃kðyÞ þ JζðkÞ

Z
dy½ρ̃kðyÞ�kþ1

− μ

�Z
dyρ̃kðyÞ − 1

�
; ð13Þ

with μ again denoting the Lagrange multiplier enforcing the
normalization of the density. Note that we have kept the
leading order contribution for large N in the integrand in
(12) and again neglected the entropy as well as subdomi-
nant singular terms that are of lower order in N. For large
N, the integral (12) can again be evaluated by the saddle
point method. Minimizing the action gives the saddle point
equation

1

2
y2 þ JζðkÞðkþ 1Þ½ρ̃kðyÞ�k ¼ μ: ð14Þ

Trivially solving this equation gives ρ̃kðyÞ ¼ ð1=lkÞ
Fkðy=lkÞ, with support over ½−lk=2;lk=2�, where lk ¼
2

ffiffiffiffiffi
2μ

p
is fixed from the normalization and is given

explicitly in Supplemental Material [45]. The scaling
function FkðzÞ is then of the form in (5) with the exponent
γk ¼ 1=k. The saddle point density coincides with the
average density hρNðxÞi for large N. In addition, since β
appears only in the combination βNð3kþ2Þ=ðkþ2Þ outside the
action in (12), clearly the saddle point density and hence the
average density hρNðxÞi is independent of β for large N,
as long as β ≫ N−2αk where αk ¼ k=ðkþ 2Þ [38,45].
This analytical prediction is then verified in MC simula-
tions (see the bottom panels in Fig. 1).
The marginal case k ¼ 1 lies at the borderline between

regime 1 and regime 2. In this case, one would expect
logarithmic corrections. Indeed, we find [45] that the
average density approaches a scaling form, hρNðxÞi∼
L−1
N ρ̃1ðx=LNÞ, where the typical position of a particle

scales as LN ≈ ðN lnNÞ1=3 for large N. The scaling
function ρ̃1ðyÞ is supported over ½−l1=2;l1=2� with
l1 ¼ 2

ffiffiffiffiffi
2μ

p
and is given by

ρ̃1ðyÞ ¼
1

4J
ð2μ − y2Þ; μ ¼ 1

2
ð3JÞ2=3: ð15Þ
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This can be also cast in the scaling form ρ̃1ðyÞ ¼
ð1=l1ÞF1ðy=l1Þ, where F1ðzÞ is given in (5) with
γ1 ¼ 1. Numerical simulations are in good agreement with
our analytical prediction, as shown in Supplemental
Material [45].
Conclusions.—In this Letter, we have computed analyti-

cally the average density profile of a classical gas of
harmonically confined particles that repel each other with
the repulsive interaction behaving as a power law with
exponent −k of the distance between any pair of particles.
Our result generalizes in a nontrivial way, to arbitrary
k > −2, the three famous classical examples: the 1D OCP
(k ¼ −1), the Dyson’s log gas in RMT (k → 0þ), and the
Calogero-Moser model (k ¼ 2). We have shown that the
underlying effective field theory that determines the aver-
age density profile for large N is governed by fundamen-
tally different physics for −2 < k < 1 and k > 1. In the
former case, the large distance behavior of the interaction
potential dominates, while the latter case is governed by its
short distance behavior. It would be interesting to study
other observables beyond the average density for general
k > −2. For instance, for the Dyson's log gas (k → 0þ) the
position of the rightmost particle xmax (the largest eigen-
value of a random matrix), centered and scaled, is known to
converge to the celebrated Tracy-Widom distribution [59].
The corresponding extreme value distribution for k ¼ −1
has recently been computed exactly [9,10] and the case
k ¼ 2 has been recently computed numerically [32].
It would be interesting to compute the limiting distribution
of xmax for generic k > −2. Finally, it would be interesting
to see if our predictions for the average density can be
measured in cold atom experiments. From that perspective,
it would be nice to extend our results for the density profile
to higher dimensions.
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Note added in proof.—Recently, we came to know from
O. Zeitouni that the case k > 1 was also studied in the
mathematics literature [60].
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