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We present a model for glassy dynamics in supercooled liquid mixtures. Given the relaxation behavior of
individual supercooled liquids, the model predicts the relaxation times of their mixtures as temperature is
decreased. The model is based on dynamical facilitation theory for glassy dynamics, which provides a
physical basis for relaxation and vitrification of a supercooled liquid. This is in contrast to empirical linear
interpolations such as the Gordon-Taylor equation typically used to predict glass transition temperatures of
liquid mixtures. To understand the behavior of supercooled liquid mixtures we consider a multicomponent
variant of the kinetically constrained East model in which components have a different energy scale and can
also diffuse when locally mobile regions, i.e., excitations, are present. Using a variational approach we
determine an effective single component model with a single effective energy scale that best approximates a
mixture. When scaled by this single effective energy, we show that experimental relaxation times of many
liquid mixtures all collapse onto the “parabolic law” predicted by dynamical facilitation theory. The model
can be used to predict transport properties and glass transition temperatures of mixtures of glassy materials,
with implications in atmospheric chemistry, biology, and pharmaceuticals.
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This Letter presents a model for glassy dynamics in
mixtures of liquids. Understanding and predicting glassy
behavior of liquid mixtures and solutions has been impor-
tant in investigating the fundamental properties of glassy
dynamics and the glass transition [1–3], as well as in areas
of research where solutions of liquids undergo vitrification
into amorphous solids, and where crystallization needs to
be avoided. These areas include chemistry of solutions [4],
and pharmaceutical and food industries [5–7]. Insight into
the properties of glassy mixtures is also important in more
complex systems such as atmospheric organic aerosols that
show glassy behavior [8–11], and in the preservation of
biological cells where vitrification may assist the recovery
of cells after freezing and/or desiccation [12,13]. The
typical approach to predict the glass transition temperature
of liquid mixtures is an empirical linear interpolation
between the glass transition temperatures of individual
components, such as the Gordon-Taylor equation [14],
without a physical basis in a microscopic theory for glassy
dynamics. In this Letter, we use the perspective of
dynamical facilitation theory to develop a model for glassy
dynamics of binary mixtures, which can be used to predict
relaxation behavior and glass transition temperatures of
supercooled liquid mixtures.
When a glass former is cooled below its onset temperature

(To) its relaxation time exhibits a super-Arrhenius increase

with decreasing temperature [15,16], and its microstructure
exhibits dynamical heterogeneity, i.e., transient but distinct
mesoscopic regions of particlemobility and immobility. The
increase in relaxation time is explained by dynamical
facilitation theory, the idea that regions of particle mobility
(“excitations”) facilitate the motion of neighboring regions
in a hierarchical manner, with small motions leading to
larger motions [17–23]. The theory predicts a super-
Arrhenius form, quadratic in inverse temperature, for the
increase in relaxation time τ with decreasing temperature.
This quadratic form collapses experimental data for relax-
ation times of a wide array of glass-forming liquids onto one
universal curve, the parabolic law, given by [23,24]

ln τ=τo ∼ J2ðβ − βoÞ2: ð1Þ

Here, β ¼ 1=T is inverse temperature, βo ¼ 1=To is the
inverse onset temperature, J is a property of the liquid and is
related to the free energy of creating an excitation, and τo is
the relaxation time at To. With knowledge of the onset
temperature To, the energy scale J, and the reference
timescale τo, one can predict the relaxation time at a given
temperature, and the glass transition temperature for a given
cooling rate [25,26]. The parabolic law [Eq. (1)] differs from
the commonly used empirical Vogel-Fulcher-Tammann
relation [15], ln τ ∼ const=ðT − TKÞ, and other proposed
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theories [27–30], in that it does not show a singularity at
nonzero temperatures. We note that there is no microscopic
physical theory to understand the onset temperature, which
is the temperature at which the relaxation behavior crosses
over from an Arrhenius to a super-Arrhenius form. The idea
of dynamical facilitation is based on prototypical models
with kinetic constraints [31–33], such as the East model
[34], that exhibit hierarchical glassy relaxation. The East
model is a one-dimensional lattice ofN spins with variables
ni ¼ 0, 1, where i ¼ 1; 2;…; N. Each lattice site represents
a region of particles and the spin variable ni indicates the
mobility of the region. ni ¼ 1 represents an excitation, i.e., a
region of mobile particles, and ni ¼ 0 represents a region of
immobile particles. The model has a noninteracting energy
function HEast ¼ J

P
i ni, where J represents the energy

required to generate particle mobility, i.e., an excitation, in a
particular region. The dynamics proceeds via single spin
flips with the constraint that a site can flip only if its left
neighbor is excited, i.e., ni−1 ¼ 1, based on the idea that
particle mobility is facilitated in the vicinity of other mobile
particles [20–22]. The typical concentration of excitations is
c ¼ hni ¼ expð−βJÞ=½1þ expð−βJÞ� ∼ expð−βJÞ at low
temperatures.
Relaxation of the system is defined as all of the spins

changing their state at least once, and progresses in the
direction of facilitation, i.e., from left to right. Sollich and
Evans [18,19] rationalized the timescale of relaxation by
considering domains between excitations, e.g., 1000001.
The height of the energy barrier to relaxation is defined as
the maximum number of excitations required in a single
configuration during the process of relaxing, or flipping,
the rightmost excitation. The minimum height of the barrier
for a domain of length l ¼ 2k is reasoned to be k excitations
by iteratively bisecting the domain. For example, a domain
of length 4L requires twice as many excitations as a domain
of length 2L, which in turn requires twice as many
excitations as a domain of length L. The minimum
energy barrier is therefore kJ ¼ ðln l= ln 2ÞJ. For the
average equilibrium domain length leq ¼ 1=c ∼ expðβJÞ,
the energy barrier is βJ2= ln 2. The relaxation time τ is
inversely related to the Boltzmann probability of this
energy barrier, giving τ ∼ expðγβ2J2Þ, which is the para-
bolic law. The factor γ represents the number of paths
available to relax a domain, which are not accounted for in
the Sollich-Evans argument, and more rigorous analysis
shows that it is bounded as 1=2 ln 2 < γ < 1= ln 2 [35].
A multicomponent East model.—In the presence of more

than one component, the relaxation dynamics includes not
only dynamical heterogeneity but also component diffusion
and mixing. The interplay between heterogeneous dynam-
ics and mixing in supercooled liquid mixtures is not
understood. With the perspective of dynamical facilitation
theory and the East model we construct a multicomponent
lattice model for mixtures of glass formers that are well
mixed and do not phase separate. We begin by considering

a mixture of two components with different energy scales,
J0 and J1. Each lattice site represents a region of molecules
of one component or the other, represented by the lattice
variables pi ¼ 0, 1. The energy cost for an excitation
depends on the type of component, i.e., the value of pi for
that site. The Hamiltonian for this two component system is

Hðfni;pig;xÞ¼
XN
i

ni½piJ1þð1−piÞJ0�þCðfpigÞ; ð2Þ

where J0 and J1 are the energies required to excite a spin
with component pi ¼ 0 or 1, respectively. Here, CðfpigÞ is
a constraint function that ensures that the total number of
each component remains fixed:

CðfpigÞ ¼
�
0; if 1

N

P
N
i pi ¼ x

∞; otherwise;
ð3Þ

where x is the fraction of sites with pi ¼ 1. The two
components do not have energies of interaction because for
the purpose of this Letter we only consider well-mixed
liquids that do not phase separate.
Extending the idea of dynamical facilitation theory that

regions of mobile particles facilitate the movement of
neighboring immobile regions, irrespective of the type of
particles in each region, we define the dynamics of the
mixture model as similar to the single component East
model, i.e., a spin can flip only if its left neighbor is excited.
The rates of creating and destroying an excitation at site i
are

k0→1;i ∝ ½pie−βJ1 þ ð1 − piÞe−βJ0 �ni−1
k1→0;i ∝ ni−1; ð4Þ

where ni ¼ 0, 1 again represents regions of immobile and
mobile particles, respectively. With the reasoning that only
regions of mobile particles are able to diffuse, two adjacent
regions will be able to exchange components only if they
are mobile. We model this as two adjacent spins exchang-
ing pi variables only if they are both excited, as illustrated
in Fig. 1. This occurs with rate

ri;i�1 ∼ nini�1½ð1 − piÞpi�1 þ ð1 − pi�1Þpi�; ð5Þ

and is based on the assumption that the mixing of particles
in two adjacent regions occurs over the same timescale
as the motion of particles. The time step in these rate
equations is taken to be unity.

FIG. 1. Schematic of a two component East lattice with colors
representing the component variables pi. A spin can only change
its value if its left neighbor is excited. Two adjacent excited spins
can exchange colors, i.e, their component variables, resulting in
diffusion (underlined).
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To illustrate the relaxation behavior of the mixture model
we choose a system with two energy scales, J0 ¼ 1 and
J1 ¼ 0.5.Wedefine the relaxation time τ as the time taken for
ninety percent of the system to change its spin variable ni at
least once, which represents ninety percent of particles
making nontrivial displacements at least once [22]. In
Fig. 2(a), we show relaxation times for mixtures with
different fractions of the two components [36]. Similar to
a single component system, the curves all appear super-
Arrhenius, with the mixture relaxation curves lying in
between the relaxation curves for the individual components.
An effective single component model.—Based on the

super-Arrhenius relaxation behavior of the mixtures in
Fig. 2(a) we hypothesize that a mixture effectively behaves
as a single, homogeneous material with an effective, pre-
dictable energy scale for excitations. This means that mixing
of components gives rise to a new, effective dynamical
heterogeneity at different length and timescales compared to
the original components. To capture the effective behavior of
the two component mixturewe postulate a single component
East HamiltonianHm, with an effective energy scale Jm. We
attempt to predict Jm as a function of the energy scales of the
individual component materials. The postulated single com-
ponent Hamiltonian Hm is given by

Hmðfni; pig; xÞ ¼ Jm
XN
i

ni þ CðfpigÞ: ð6Þ

We use a variational method to calculate Jm that best
approximates the partition function for the multicomponent
Hamiltonian H [Eq. (2)]. Using Jensen’s inequality
(sometimes known as the Gibbs-Bogoliubov-Feynman
approach [37,38]) we have

Z ¼ Zm

Zm

X
n1

� � �
X
nN

X
p1

� � �
X
pN

e−βHe−βHmeþβHm

¼ Zmhexpð−βΔHÞiHm
≥ Zm expð−βhΔHiHm

Þ; ð7Þ

where Z and Zm are the canonical partition functions
for Hamiltonians H and Hm respectively, h� � �iHm

indicates
the canonical ensemble average with energy Hm, and
ΔH ¼ H −Hm.
Calculating the value of Jm that maximizes the right hand

side of the inequality we obtain

Jm ¼ xJ1 þ ð1 − xÞJ0: ð8Þ

The effective energy scale Jm can be interpreted as giving
rise to effective excitations that occur with probability
expð−βJmÞ. Revisiting the Sollich and Evans argument
[18,19], the average equilibrium domain length between
effective excitations is leqm ¼ expðβJmÞ, creating a mini-
mum energy barrier of γJm ln leqm ¼ γβJ2m. This gives a
relaxation time τ ∼ expðγβ2J2mÞ, which we refer to as the
parabolic law for mixtures. Using the effective energy Jm
from Eq. (8) to rescale the data in Fig. 2(a) we find that all
the relaxation curves collapse onto a universal parabolic
form [Fig. 2(b)]. This indicates that the two component
system behaves as a single component system with an
effective energy scale of Jm, an average of the energy scales
of the individual components.
Comparison with experimental data.—With this under-

standing from the East model we attempt to validate the
idea of an effective mixture energy scale with available
experimental data for supercooled mixtures. We analyze
dielectric relaxation measurements for binary mixtures of
various glass-forming liquids [2,39–41]. Relaxation times
for thirty three mixtures of five pairs of liquids are shown in
Fig. 3(a). We first fit parabolas to relaxation time data for
single liquid components to determine J values for the
individual components. (We use the low temperature data
for these fits because the higher temperature data may
contain significant contributions from the nonsupercooled
liquid, i.e., liquid above the onset temperature.) We then
calculate Jm for each mixture using Eq. (8). βo and τo for
each mixture are treated as fitting parameters, and γ is
treated as absorbed into the J value for all experimental

(a) (b)

FIG. 2. (a) Relaxation times τ of East model mixtures of two components J1 ¼ 0.5 and J0 ¼ 1.0 as a function of inverse temperature
β. x is the fraction of spins of type 1. (b) All the curves collapse onto the parabolic law when the inverse temperature axis is scaled by the
effective energy Jm ¼ xJ1 þ ð1 − xÞJ0. The factor γ ¼ 1.18 is within the predicted bounds 1=2 ln 2 < γ < 1= ln 2 [35], and c is an
additive constant. Error is smaller than the symbols used.
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data. On scaling the inverse temperature axis by Jm, we find
that all the single component as well as mixture data
collapse onto the parabolic law [Fig. 3(b)]. Consistent with
the model, it appears that mixtures of liquids effectively
behave as a single liquid with an energy scale that is an
average of the energy scales of the individual components
as per Eq. (8).
Recalling that the onset temperature is the temperature

below which spatially and temporally heterogeneous
dynamics and super-Arrhenius relaxation behavior occur,
it is reasonable to expect that the onset temperature of a
mixture lies in between, and proportional to the fraction of,
the two individual components. Examining the estimated
inverse mixture onset temperatures βo, we find that they are
bounded by the onset temperatures of the two individual
components and change systematically depending on the
fraction of each component, with the exception of sorbitol-
glycerol mixtures. In the latter case we find that all the
mixture data are best fit using onset temperatures that are
lower than both the individual components, even as the
curvature of the parabola Jm is well predicted by Eq. (8).
We revisit this pair of liquids in the discussion below.
Modeling onset temperatures.—In the previous section

we determined relaxation behavior by predicting the
effective energy scale Jm of the mixture. We now attempt
to determine mixture relaxation times by predicting both
the effective energy scale as well the onset temperature. The
East model shows super-Arrhenius relaxation behavior for
all T > 0 [44,45]; i.e., it has no meaningful onset temper-
ature [24,46]. To model materials more realistically the
temperature field is modified to eβ ¼ β − βo, where βo is the
inverse onset temperature of the material [25]. To more

effectively predict relaxation behavior for mixtures, where
each component can have a different onset temperature,
we further modify our multicomponent East model so
that depending on the component present each lattice site
feels an effective temperature field eβ0 ¼ 1=T − 1=To

0 oreβ1 ¼ 1=T − 1=To
1 , where To

0 and To
1 are the onset temper-

atures of the two components. To achieve this we modify
the mixture Hamiltonian [Eq. (2)] to

Hoðfni; pig; xÞ ¼
XN
i

ni

�eβ1
β
piJ1 þ

eβ0
β
ð1 − piÞJ0

�

þ CðfpigÞ: ð9Þ

The corresponding partition function Zo is given by

Zo ¼
X
n1

� � �
X
nN

X
p1

� � �
X
pN

exp

�
−
XN
i

nifeβ1J1pi

þ eβ0J0ð1 − piÞg − βCðfpigÞ
�
; ð10Þ

where it can be seen that eβ0 and eβ1 act as effective
temperature fields depending on the type of species at
lattice site i. Postulating again that mixtures of components
behave as a single component with effective inverse onset
temperature eβom and energy scale Jm, we propose an
effective single component Hamiltonian Ho

m of the form

Ho
mðfni; pig; xÞ ¼

eβmJm
β

XN
i

ni þ Cfpig; ð11Þ

(a) (b) (c)

FIG. 3. (a) Relaxation times as a function of inverse temperature of mixtures of five pairs of liquids: sorbitol (SOR)–glycerol (GLY)
[39,42], 2-methyl-1-butanol (BUT)–2-ethyl-1-hexanol (HEX) [40], methyl-m-toluate (MMT)–methyl-o-toluate (MOT) [2], di-n-butyl
phthalate (DBP)–methyl-m-toluate (MMT) [2], and glycerol (GLY)–water (WAT) [41]. (b) All single component and mixture curves
collapse onto the parabolic law when the temperature axis is scaled by the effective mixture energy scale Jm [Eq. (8)]. For glycerol-water
mixtures we use 40% glycerol as one reference curve and pure glycerol as the second because the values of βo and J for pure water are
difficult to obtain with accuracy [43]. With this reference curve, all intermediate glycerol-water mixtures show excellent agreement with
the parabolic law for mixtures. (c) All single component and mixture curves collapse onto the parabolic law when the temperature axis is
scaled by eβmJm [Eq. (13)], except sorbitol-glycerol mixtures (inset).
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where eβm ¼ β − β̃om. The partition function Zo
m is given by

Zo
m ¼

X
n1

� � �
X
nN

X
p1

� � �
X
pN

exp

�
−eβmJmXN

i

ni−βCfpig
�
;

ð12Þ

where eβm acts as the effective temperature field for every
lattice site i. Again using Jensen’s inequality to now findeβmJm that best approximates Zo, we obtain

eβmJm ¼ xeβ1J1 þ ð1 − xÞeβ0J0: ð13Þ

This equation gives an effective temperature-energy scale
for a mixture given the energy scales and onset temper-
atures of the individual components, and reduces to our
earlier result [Eq. (8)] at low temperatures.
The effective scale eβmJm can again be interpreted as

giving rise to effective excitations with probability
expð−eβmJmÞ. The average distance between these excita-
tions, i.e., the average equilibrium domain length, is
leqm ¼ expðeβmJmÞ, giving rise to an energy barrier of
Jm ln leqm ¼ eβmJ2m. The expected time taken to overcome
this barrier, and therefore the relaxation time of the average
equilibrium domain length, is τ ∼ expðβeβmJ2mÞ. With refer-
ence to the relaxation time at the onset temperature τo we
have τ=τo ∼ expðeβ2mJ2mÞ, which is the parabolic form for
relaxation of mixtures that takes into account both the
energy scales J and the onset temperatures βo of the
individual components. This form reduces to our earlier
result, τ ∼ expðβ2J2mÞ, at low temperatures.
To compare the new parabolic equation for mixtures with

experimental data we use the individual values of J and βo

with Eq. (13) to calculate the combined energy-temperature
scales. Here, we only need one fitting parameter, the
reference timescale τo. In Fig. 3(c) we find that the
relaxation behavior for all liquid mixtures agrees well
the parabolic form when the data are scaled by eβmJm as
per Eq. (13), with the exception of mixtures of sorbitol and
glycerol. When using Eq. (8) in the previous section, we
noted that even though Jm for sorbitol-glycerol mixtures
agreed well with the data, the estimated values for βo were
unexpectedly lower than βo of the individual liquids. This,
along with the lack of agreement in Fig. 3(c), leads us to
suggest further measurements for mixtures of glycerol and
sorbitol. We note, however, that this pair of liquids has
individual J values that are an order of magnitude apart,
and we speculate whether this is related to why our
predictions for the effective mixture energy scale Jm hold
while predictions for the combined effective temperature-
energy scale eβmJm do not.
Predicting glass transition temperatures of mixtures.—

Empirical linear interpolations, such as the Gordon-Taylor
equation [14], are typically used to predict the glass

transition temperature for mixtures [14]. This approach
is not based on a microscopic physical description of glassy
dynamics or glass formation, and also does not take into
account the protocol dependence of the glass transition
temperature. The work presented here provides a prediction
for the behavior of supercooled mixtures across various
temperatures, from which the glass transition temperature
of a mixture can be calculated for a given cooling rate
[25,26]. For a given cooling rate ν the glass transition
temperature Tg is the temperature at which the relaxation
time becomes slower than the time available to equilibrate
at that temperature, i.e., the temperature at which ν−1 ∼
jdτ=dTjT¼Tg

. Using the parabolic expression τ ∼
τo expðeβ2mJ2mÞ in the above equation gives a prediction
for the glass transition temperature of a mixture.
In summary, we find that a mixture of well-mixed glass-

forming liquids behaves as a single material whose dynamics
is governed by an effective energy scale, an average of the
energy scales of the individual components.We anticipate the
use of our effective model in predicting transport properties
and glass transition temperatures of mixtures especially for
compounds, and under conditions, where making measure-
ments is challenging. Extending this model from binary to
polydisperse mixtures may provide insight into the effects of
polydispersity on the dynamics of glass formers [47].We also
anticipate the use of this model in studying the interplay
between dynamical heterogeneity of the system and the
diffusion and phase separation of individual components,
possibly involving interfacial fronts between two dynamical
phases bearing a dynamical interfacial tension [48]. This is
especially relevant in multicomponent systems such as
atmospheric organic aerosols, wheremelting (and formation)
of amorphous solids is hypothesized to occur via an increase
(or decrease) in water content [11].
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