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We consider the characterization of entanglement depth in a quantum many-body system from the
device-independent perspective; that is, we aim at certifying how many particles are genuinely entangled
without relying on assumptions on the system itself nor on the measurements performed. We obtain device-
independent witnesses of entanglement depth (DIWEDs) using the Bell inequalities introduced in [J. Tura
et al., Science 344, 1256 (2014)] and compute their k-producibility bounds. To this end, we exploit two
complementary methods: first, a variational one, yielding a possibly optimal k-producible state; second, a
certificate of optimality via a semidefinite program, based on a relaxation of the quantum marginal
problem. Numerical results suggest a clear pattern on k-producible bounds for large system sizes, which we
then tackle analytically in the thermodynamic limit. Contrary to existing DIWEDs, the ones we present
here can be effectively measured by accessing only collective measurements and second moments thereof.
These technical requirements are met in current experiments, which have already been performed in the
context of detecting Bell correlations in quantum many-body systems of 5 × 102–5 × 105 atoms.
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Introduction.—Entanglement dwells at the core of
quantum physics [1]. Besides being a holistic feature of
quantum systems, it is also a resource for nonclassical
tasks such as quantum cryptography [2] or teleportation [3],
and gives rise to Bell correlations [4], which enable
stronger, device-independent (DI) quantum information
processing [5,6]. Entanglement has also proven essential
to grasp quantum many-body phenomena [7], and to be key
for quantum simulations [8,9] and quantum-enhanced
metrology [10], inspiring even the tensor network
ansatz [11].
From the experimental perspective, spin-squeezed states

have been shown to be entangled [12], and they are
typically prepared in large clouds of atoms in different
settings such as thermal gas cells [13], atomic ensembles
[14], or Bose-Einstein condensates [15,16]. A central
objective in experimental quantum physics is thus the
generation and certification of entanglement [17,18].
Systems with more than two particles can exhibit

entanglement in a whole plethora of ways (see, e.g.,
Ref. [19]), and much effort has been devoted to detecting
its strongest form: Genuine multipartite entanglement
(GME) [20–22]. However, the technical requirements for
GME detection are usually too demanding to be fulfilled in
realistic experimental conditions and one is interested,
rather, in characterizing the system’s so-called entangle-
ment depth [23] (i.e., the minimal amount of GME particles
within the system [24]).

The usual approaches to entanglement characterization
are based on full tomography, in order to measure the
reconstructed density matrix against an entanglement wit-
ness. However, these approaches suffer from, at least, two
caveats. On the one hand, the exponential growth of the
Hilbert space description with the particle number renders
them impractical in the many-body regime. On the other
hand, they require a deep understanding and faithful
characterization of the measurements, states, and relevant
degrees of freedom of the system. This may be problematic
because it is well known that wrong conclusions can be
drawn if these assumptions fail, even slightly [25,26]. An
alternative approach, allowing us to circumvent these
issues, is device-independent witnesses of entanglement
depth (DIWEDs) [25–27] (see also Ref. [28] for recent
developments), which rely only on the observed statistics
arising from a Bell-like experiment.
In this work, we present a method to derive DIWEDs

from Bell inequalities with two dichotomic observables
per party. When these DIWEDs are based on two-body,
permutationally invariant Bell inequalities (PIBIs) [29,30],
their additional structure enables us to reach larger system
sizes in comparison with current methodology, even
enabling us to draw conclusions in the many-body regime.
Furthermore, such PIBIs imply the possibility of entangle-
ment detection with collective observables such as total
spin components and second moments thereof, as it has
been done in recent experiments in the context of Bell
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correlation witnesses [31,32]. Our DIWEDs can discrimi-
nate all entanglement depth levels, from full separability to
GME, since our method allows one to compute the so-
called k-producibility bounds.
Preliminaries.—In a multipartite quantum system, entan-

glement can manifest in different notions and strengths,
which is equivalently mapped to quantum states belonging
to different separability classes [19]. To be more precise,
let us consider n parties sharing some multipartite state and
a partition PðkÞ of ½n� ≔ f1;…; ng into m nonempty
subsets Ai, each of size at most k, being pairwise disjoint:
Ai ∩ Aj ¼ ∅ if i ≠ j. We denote such a partition P ¼
fA1;…;Amg and omit the superindex k whenever it is
clear from the context. Then, we say that a pure n-partite
state jΨi is k-producible with respect to the partition P if it
can be expressed as

jΨi ¼ jϕ1iA1
⊗ � � � ⊗ jϕmiAm

; ð1Þ

where each jϕiiAi
is a pure state corresponding to the group

Ai. We then say that a mixed state ρ is k producible if, and
only if, it can be expressed as

ρ ¼
X
P

λP jΨihΨjP; ð2Þ

i.e., a convex combination (
P

P λP ¼ 1, λP ≥ 0) of pro-
jectors onto the states given in Eq. (1) over different
partitions PðkÞ. The minimal k for which a given multi-
partite state ρ admits a decomposition [Eq. (2)] is called
entanglement depth.
A natural tool to certify entanglement in a device-

independent way is Bell inequalities. To be more precise,
let us consider the simplest multipartite Bell scenario, in
which n parties share a multipartite quantum state ρ. On the
corresponding subsystem of ρ, each party measures one of

two dichotomic observables MðiÞ
k , whose outcomes are

labeled �1. This scenario is usually called ðn; 2; 2Þ. Let
M

ði1;…;ipÞ
k1;…;kp

denote the p-body correlation function in which

party ij measures the kjth observable. Then, a multipartite
Bell inequality can be written as I − βC ≥ 0 with I being a
linear combinations of such correlations of the generic form

I ≔
Xn
p¼1

X
kj∈f0;1g

X
1≤i1<…<ip≤n

α
ði1;…ipÞ
k1;…;kp

M
ði1;…;ipÞ
k1;…;kp

; ð3Þ

where α
ði1;…ipÞ
k1;…;kp

∈ R and βC is the so-called classical bound

defined as βC ¼ minLHVI with the minimum taken over all
local hidden variable (LHV) theories (or, equivalently, by
all correlations arising from 1-producible states).
Violation of Bell inequalities signals entanglement in

quantum systems; however, does not specify its depth. Our
main aim here is to go significantly beyond and design

Bell-like inequalities capable of revealing entanglement
depth in multipartite quantum states. Precisely, we want to
obtain inequalities I − βk ≥ 0, where I is given in Eq. (3)
while βk—the so-called k-producible bound—is defined in
an analogous fashion as βC, but now the optimization is
carried over k-producible states and dichotomic measure-
ments of, in principle, any local dimension.
It is clear that the computation of βk is a formidable task;

however, in the simplest ðn; 2; 2Þ scenario considered here,
it can be significantly simplified. That is, we can follow the
reasoning of Ref. [33], to see that to find βk it is enough to
perform the optimization over n-qubit k-producible states

and local one-qubit traceless observablesMðiÞ
k . We can then

assume, without loss of generality, that all the observables

are of the form MðiÞ
k ¼ cos θi;kσ

ðiÞ
x þ sin θi;kσ

ðiÞ
z , with σðiÞx=z

being the Pauli matrices acting on site i. Denoting by θ the
vector consisting of all θi;k, we consequently have

βk ¼ min
θ;ρ

Tr½BðθÞρ�; ð4Þ

where BðθÞ is the Bell operator corresponding to a given I
and ρ is an n-qubit k-producible state of the form Eq. (2). By
a convex-roof argument, the above optimization is attained at
a pure state of the form Eq. (1), for some partition PðkÞ,
which means that

βk ¼ min
θ;jΨi

hΨjBðθÞjΨi: ð5Þ

We then have I − βk ≥ 0 for any k-producible state.
The minimization in Eq. (5) can in principle be per-

formed exactly, since it can be expressed as a polynomial
function satisfying polynomial equality constraints (com-
ing from the normalization of jϕii and cos2 θi;k þ
sin2 θi;k ¼ 1). However, the degree of such a polynomial
grows in general with the number of parties n, potentially
yielding a vast quantity of local minima, rendering this
approach impractical (see Ref. [34] for details).
In order to significantly facilitate our considerations, in

particular the computation of βk, in this work we study two-
body PIBIs of the form

I ≔
X

k∈f0;1g
αkSk þ

X
k≤l∈f0;1g

αklSkl; ð6Þ

where

Sk ≔
X
i∈½n�

MðiÞ
k ; Skl ≔

X
i≠j∈½n�

Mði;jÞ
k;l : ð7Þ

To determine βk, we have envisaged two complementary
numerical methods. The first one allows us to build a good
guess for it whereas the second one’s aim is to certify that
this guess is the global minimum of Eq. (5).
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Variational upper bound to βk.—Building upon the so-
called see-saw optimization method [35,36], we find a local
minimum, denoted βUk , that by construction, upper bounds
βk, i.e., βUk ≥ βk. To this end, we fix a partition P and pick
random starting measurement settings θ and a random
k-producible state jΨi. The see-saw method uses the
stochastic gradient descent and iterates back and forth
between θ and jΨi, keeping the rest of the parameters
fixed. Note that the optimization over k-producible states
cannot be done via a straightforward semidefinite program
(SDP) because the tensor product structure makes it non-
linear in the states. However, one can also use a see-saw
optimization scheme here by keeping θ and jϕAi fixed for
all A ∈ P except one, say A0.
Here the key advantage of two-body PIBIs is clear: the

degree of the polynomial resulting from Eq. (5) is constant.
This drastically reduces the amount of local minima of
hΨjBðθÞjΨi, which can now be split as

X
A∈P

�X
k

αkhϕAjBA
k jϕAi|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

one-body terms

þ
X
k≤l

αklhϕAjBA
kljϕAi|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

same region terms

�

þ
X

A≠A0∈P

�X
k≤l

αklhϕAjBA
k jϕAihϕA0 jBA0

l jϕA0 i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
crossed region terms

�
; ð8Þ

where jϕAi has support on the parties forming region
A ⊆ ½n�, and we have defined

BA
k ≔

X
i∈A

MðiÞ
k ; BA

kl ≔
X
i∈A

X
j∈Anfig

MðiÞ
k ⊗ MðjÞ

l : ð9Þ

During the state optimization, due to the form of E (8), one
finds jϕA0 i as the eigenvector corresponding to the minimal
eigenvalue of B̃A0 , where

B̃A0 ¼
X
k

αkB
A0
k þ

X
k≤l

αklB
A0
kl

þ
X
k≤l

αkl

�X
A≠A0

hBA
k iBA0

l þ BA0
k hBA

l i
�
; ð10Þ

with hBA
k i ¼ hϕAjBA

k jϕAi. To improve θ, one can also use
the see-saw optimization by fixing the value of all meas-
urement settings except for one party and iterating. By
construction, at each iteration one obtains a lower and
lower expectation value hΨjBðθÞjΨi until a minimum is
found, which we denote βUk .
This method can be applied to any Bell inequality.

However, it may lead to poor upper bounds if the problem
has many local minima. Fortunately, as shown below, for
our choice of a Bell expression I we reach the global
minimum.
Certificate of lower bound to βk.—Consider BðθÞ and

a partition P. Since BðθÞ contains at most two-body

operators, given an arbitrary quantum state ρ, Tr½BðθÞρ�
expresses as

Tr½BðθÞρ� ¼
X
A∈P

�X
k

αkTr½BA
k ρA� þ

X
k≤l

αklTr½BA
klρA�

�

þ
X

A≠A0∈P

X
k≤l

αklTr½BA
k ⊗ BA0

l ρA∪A0 �; ð11Þ

where ρA is the reduced state of ρ on the subsystems
formingA. If one restricts ρ to being separable with respect
to some partition P, as it is the case for the optimal value of
βk, then one would need to ensure that ρA∪A0 is separable
across the AjA0 cut. It is known, unfortunately, that
deciding whether a bipartite quantum state is separable
is NP-hard (nondeterministic polynomial-time hard) [37],
so there is a priori no easy way to enforce this condition.
However, to find a lower bound on βk, one can relax the
separability condition to an efficiently tractable one, such
as requiring ρA∪A0 to satisfy the positivity under partial
transposition (PPT) criterion [38], which we denote
ρTA
A∪A0 ≽ 0.
Therefore, one can find a lower bound βLk to Tr½BðθÞρ�

by solving the following SDP:

βLk ¼ minTr½BðθÞρ�
s:t:ρA ≽ 0; ρA∪A0 ≽ 0;

Tr½ρA� ¼ Tr½ρA∪A0 � ¼ 1;

TrA0 ½ρA∪A0 � ¼ ρA;

ρTA
A∪A0 ≽ 0: ð12Þ

Note that a state yielding βk is of the form of Eq. (1),
which trivially satisfies the SDP conditions Eq. (12) as
ρA∪A0 ¼ jϕAihϕAj ⊗ jϕA0 ihϕA0 j. However, the feasible set
of Eq. (12) is clearly larger and contains configurations that
do not come from quantum states, as Eq. (12) can be seen as
a relaxation of the quantum marginal problem. We note that
this method is applicable to any Bell inequality built from
marginals.
Hence, by optimizing βLk for every partition P and

measurement parameters θ, and βUk over different partitions
P, one obtains βLk ≤ βk ≤ βUk .
Numerical results.—We have seen that the above meth-

ods yield values of βUk − βLk within numerical accuracy
(thus determining βk up to numerical accuracy) for
the inequalities introduced in Ref. [29] (see Fig. 1).
Furthermore, there is strong numerical evidence that for
these PIBIs, βk is reached when all parties within each
region A pick the same measurement settings (up to local
unitary transformations). The two-body structure and the
symmetries in the PIBIs greatly reduce the number of
local minima in Eq. (5). Our methods can explore up to
n ¼ 15 without extra assumptions, limited by the memory
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requirements of the second method. In Ref. [34] these
numerical results are presented in detail.
Extrapolation to the many-body regime.—Numerics

suggest that for PIBIs in Ref. [29] [cf. Eq. (6)], βk is
achieved when the Bell operator becomes invariant with
respect to permutations within the regions of the optimal
partition P. Furthermore, this partition P tends to be the
most balanced (i.e., containing as many groups of k parties
as possible). As a consequence, one can use Schur-Weyl
duality representation theory results [39] to split the Hilbert
space into invariant subspaces of much smaller dimension,
by considering the projector

ΠP
J ≔ ⨂

A∈P
ΠA

JA
; ð13Þ

where ΠA
JA

projects the Hilbert space corresponding to
A onto the JA-th spin length [40,41]. This is a great
simplification, because now it allows us to compute large
entanglement depths: recall that ΠA

JA
projects the 2jAj-

dimensional subspace onto a ð2JA þ 1Þ-dimensional sub-
space, where JA ≤ jAj=2. Interestingly, we also observe
that the considered Bell inequalities are always saturated
for the maximal spin subspace; i.e., when JA ¼ jAj=2 for
all A ∈ P.
Example.—Let us illustrate our method with an exem-

plary PIBI [cf. Eq. (6)] constructed in Ref. [29] given by

I ¼ −2S0 þ
1

2
S00 − S01 þ

1

2
S11: ð14Þ

Figure 1 presents the βk to construct the DIWED
I − βk ≥ 0. We have also studied bounds from generaliza-
tion of Clauser-Horne-Shimony-Holt (CHSH) [42] and
PIBIs detecting Dicke states [30], which are presented
in Ref. [34].
Asymptotic behavior.—After suitable local unitary trans-

formations, the optimal k-producible state for the expres-
sion Eq. (14) and sufficiently large k, can be well
approximated analytically by a product (with respect to
a partition P) of Gaussian superpositions of Dicke states,
each with different parameters μA, σA:

jΨi ¼ ⨂
A∈P

� X
0≤kA≤jAj

ψA
kA
jDkA

jAji
�
; ð15Þ

where ψA
kA

≔ e−ðkA−μAÞ2=4σA=
ffiffiffiffiffiffiffiffiffiffiffi
2πσA

4
p

. Note that, when
P ¼ f½n�g, one recovers the analytical form of the state
maximally violating Eq. (14) [30]. This enables us to obtain
an asymptotic form for the k-producible bounds. For large
n, one can well approximate hΨjBjΨi by a quartic poly-
nomial in μA, σA (see Ref. [34] for details). In Fig. 2 we
show how one can gain information about the entanglement
depth of the system by simply looking at the Bell inequality
violation.

FIG. 2. Asymptotic approximation of the DIWED bounds for
the 2-body PIBI Eq. (14) with n ¼ 104. Each point corresponds
to the k-producible bound with k ¼ n=m and m ∈ f1;…; 10g.
The dotted lines are for illustrative purposes. In their derivation,
we used that for sufficiently large n and k the optimal k-
producible state is well approximated by a product of Gaussian
superpositions of Dicke states [Eq. (15)] (see Ref. [34] for
details).

FIG. 1. DIWED bounds for the 2-body PIBI [Eq. (14)] for
n ≤ 50. The relative quantum violation depends on the classical
bound βC of Eq. (3) and the k-producible bound βk in Eq. (4).
Each line represents a k-producible bound. The wavylike behav-
ior of the bounds comes from the fact that Eq. (14) has no
quantum violation for less than 5 parties [29]. Therefore, the
optimal partition P for every pair ðn; kÞ tries to avoid groups of 4
parties or less. For n ≤ 15, the optimizations have been per-
formed without assumptions, yielding a gap βUk − βLk within
numerical accuracy satisfying βLk ≤ βk ≤ βUk . In the extrapolation
for larger n, we have assumed the symmetry property within
regions Ai via Eq. (13) to reduce the number of parameters.
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Comparison to other entanglement depth criteria and
experimental data.—One of the key features of the PIBIs
from Refs. [29,30,43] is that they can be effectively
evaluated via a Bell correlation witness that only requires
estimation of first and second moments of the total spin
components. This has already been performed experimen-
tally in 480 87Rb atoms [31] and in a thermal ensemble of
5 × 105 atoms [32]. Witnesses of entanglement depth
(although not DI) based on spin-squeezing inequalities have
allowed us to detect k ≥ 28 in a 8 × 103 atom BEC [23].
Figure 3 compares our DIWEDs with other entanglement
depth criteria, such as theWineland spin squeezing criterion
[44,45] and Bell correlation depth witnesses [46]. Finally,
we see that with the experimental data from Ref. [31], our
DIWED guarantees entanglement depth of k ≥ 15.
Conclusions.—In this Letter, we have presented a

method to construct DIWEDs from many-body Bell
inequalities, numerically finding their k-producible bounds
for two-body PIBIs. The method can be readily generalized
to higher-order correlators, improving its detection capabil-
ity, however requiring a harder optimization. However, the
straightforward generalization of the method to Bell sce-
narios having more measurements or outcomes would
require going to the semi-device-independent regime, in
which one makes assumption on the physical dimension of
the system [47]. We have tested our method against real
experimental data and we see, not surprisingly, that the

entanglement depth detected by our DIWEDs is larger than
Bell correlation depth witnesses against no-signalling
resources, which are much more demanding [46], yet
smaller when compared to non-DI witnesses of entangle-
ment depth [23,48]. Interestingly, the DIWEDs proposed
here can be tested within current technology, solving an
open question posed in Ref. [26], thus making them
experimentally more appealing than existing DI entangle-
ment witnesses [25,26]. Our method goes beyond those
solely based on the Navascués-Pironio-Acín (NPA) hier-
archy, which is impractical for a larger number of parties,
and those focused in GME detection, which may be too
demanding technologically.
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Lewenstein, and A. Acín, Science 344, 1256 (2014).

[30] J. Tura, R. Augusiak, A. Sainz, B. Lücke, C. Klempt, M.
Lewenstein, and A. Acín, Ann. Phys. (Amsterdam) 362, 370
(2015).

[31] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P.
Treutlein, and N. Sangouard, Science 352, 441 (2016).

[32] N. J. Engelsen, R. Krishnakumar, O. Hosten, and M. A.
Kasevich, Phys. Rev. Lett. 118, 140401 (2017).

[33] B. Toner and F. Verstraete, arXiv:quant-ph/0611001.
[34] J. Tura, A. Aloy, F. Baccari, A. Acín, M. Lewenstein, and

R. Augusiak, companion paper, Phys. Rev. A 100, 032307
(2019).
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