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Frictional granular matter is shown to be fundamentally different in its plastic responses to external
strains from generic glasses and amorphous solids without friction. While regular glasses exhibit plastic
instabilities due to the vanishing of a real eigenvalue of the Hessian matrix, frictional granular materials
can exhibit a previously unnoticed additional mechanism for instabilities, i.e., the appearance of a pair
of complex eigenvalues leading to oscillatory exponential growth of perturbations that are tamed by
dynamical nonlinearities. This fundamental difference appears crucial for the understanding of plasticity
and failure in frictional granular materials. The possible relevance to earthquake physics is discussed.
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It is often stressed that the mechanical properties of
frictional granular matter and of glassy amorphous solids
share many similarities [1–5]. However, the presence of
friction implies that the effective forces in frictional solids
are not derivable from a Hamiltonian. While Hamiltonian
models might in some cases mimic non-Hamiltonian ones
[6,7], here we show that the absence of a Hamiltonian
implies the existence of previously unreported oscillatory
instabilities in frictional granular matter that cannot exist in
Hamiltonian systems. These oscillatory instabilities furnish
a micromechanical mechanism for a giant amplification of
small perturbations that can lead eventually to major events
of mechanical failure. We will demonstrate this physics in
the context of amorphous assemblies of frictional disks, but
will make the point that the mechanism discussed here is
generic for systems with friction.
To motivate the new ideas recall that the understanding

of plastic instabilities, shear banding, and mechanical
failure in athermal amorphous solids with an underlying
Hamiltonian description has progressed significantly in
the last 20 years. Beginning with the seminal papers of
Malandro and Lacks [8,9], it became clear that an object
that controls the mechanical responses of athermal glasses
is the Hessian matrix. In an athermal (T ¼ 0) system of N
particles at positions ðr1; r2;…; rNÞ we define the
Hamiltonian Uðr1; r2;…; rNÞ. The Hessian matrix is

Hαβ
ij ≡ ∂2Uðr1; r2;…; rNÞ

∂rαi ∂rβj
¼ −

∂Fα
i

∂rβj
: ð1Þ

Here Fi is the total force on the ith particle, and in systems
with binary interactions we can write Fi ≡P

j Fij with the
sum running on all the particles j interacting with particle i.

Being real and symmetric, the Hessian matrix has real
eigenvalues that are all positive as long as the material is
mechanically stable. Under strain, the system may display a
saddle node bifurcation in which an eigenvalue goes to
zero, accompanied by a localization of an eigenfunction,
signaling a plastic instability that is accompanied by a drop
in stress and energy [10]. A significant amount of work was
dedicated to understanding the density of states of the
Hessian matrix, which differs in amorphous solids from the
classical Debye density of purely elastic materials
[3,11,12]. The well-known “Boson peak” was explained
by the prevalence of “plastic modes” that can go unstable
and do not exist in pure elastic systems. The system size
dependence of the eigenvalues of the Hessian [11], their
role in determining the mechanical characteristics like the
elastic moduli [13], the failure of nonlinear elasticity in
such materials [13–15], and the relevance to shear banding
and mechanical failure [16–18] all underline the impor-
tance of this approach to the theory of amorphous solids.
Alas, this useful approach appears to be irretrievably lost

when we consider the available models for frictional
granular media with both normal and tangential forces at
every contact of two granules. The reason is twofold. First,

the tangential forces FðtÞ
ij (see below for details) are not

analytic because of the Coulomb constraint, jFðtÞ
ij j ≤ μjFðnÞ

ij j,
bounding the magnitude of the tangential force by the

normal force FðnÞ
ij multiplied by μ, which is the friction

coefficient. Second, and most important, forces in granular
systems are history dependent and hence not derivable from
a Hamiltonian. The history dependence is a key feature of
the granular interaction, retained by all interaction models,
such as the popular Hertz-Mindlin one [19], where inter-
particle forces are derived by coarse graining the highly
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complex microscopic mechanics of compressed granules.
As the resulting model forces cannot be derived from a
Hamiltonian function, they are not energy conserving. We
stress that this occurs also in the absence of viscous damping
and before the Coulomb limit is reached.
To describe the failure of a granular system as a

dynamical instability, we follow a two-step approach.
The first (maybe trivial looking) step that we propose here
is to smooth out the approach to the Coulomb limit to allow
differentiating the tangential force [see Eq. (7) below]. In
the second step, we consider frictional disks for which the
coordinates now include the positions ri of the centers of
mass and the angles θi of each disk. The Newton equations
of motion are written as

mi
d2ri
dt2

¼ Fiðq1; q2;…; qNÞ;

Ii
d2θi
dt2

¼ Tiðq1; q2;…; qNÞ; ð2Þ

where qi ≡ fri; θig≡ frxi ; ryi ; θig andmi, Ii are masses and
moment of inertia. It is important to stress that the forces in
Eq. (2) depend only on the generalized coordinates qj; i.e.,
first derivatives do not appear. The stability of the system is
then determined by an operator obtained from the deriv-
atives of F̃i ¼ ðFi;TiÞ (see Supplemental Material for
details [20]). In other words,

Jij ≡ −
∂F̃i

∂qj : ð3Þ

The analogy between the operator J and the Hessian matrix
is apparent. However, there is a huge difference for which
the consequences are explored below. J is not a symmetric
operator. Accordingly, it can have real eigenvalues as the
Hessian, but it can also display a number of eigenvalues as
complex conjugate pairs. When a pair of complex eigen-
values, λ1;2 ¼ λr � iλi, gets born, a novel instability
mechanism develops. Indeed, these eigenvalues correspond
to four solutions eiωt to the linearized equation of motion,
with

iω1;2 ¼ ωi � iωr; iω3;4 ¼ −ωi � iωr; ð4Þ

with ωr � iωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λr � iλi

p
. The first pair in (4) induces an

oscillatory motion with an exponential growth of any
deviation qð0Þ from a state of mechanical equilibrium,

qðtÞ ¼ qð0Þeωit sinðωrtÞ: ð5Þ

The second pair represents an exponentially decaying
oscillatory solution. Note that this bifurcation is not a
regular Hopf bifurcation. It needs at least four degrees of
freedom (four first-order or two second-order differential
equations). This is a somewhat unusual bifurcation that is

due to the symmetry of the equations of motion that lack
first derivatives. We also comment again that such a
bifurcation is impossible in frictionless amorphous solids
with a microscopic Hamiltonian.
To validate this theoretical scenario and explore its

consequences, we focus on a binary assembly ofN frictional
disks of massm in a box of size L2, half of which with radius
σ1 ¼ 0.5 and the other half with σ2 ¼ 0.7. Under external
stress, they interact with binary interactions; the normal
force is determined by the overlap δij ≡ σi þ σj − rij, where
rij ≡ ri − rj. The normal force is Hertzian,

FðnÞ
ij ¼ knδ

3=2
ij r̂ij; r̂ij ≡ rij=rij: ð6Þ

The tangential force is determined by the tangential dis-
placement tij, the integral of the velocity at the contact point
over the duration of the contact, rotated so as to enforce
tijr̂ij ¼ 0 at all times. This is quite standard [21]. We deviate
from the standard in the definition of the tangential force,
which we assume to be

FðtÞ
ij ¼ −ktδ

1=2
ij

�
1þ tij

t�ij
−
�
tij
t�ij

�
2
�
tijt̂ij;

t�ij ≡ μ
kn
kt

δij; ð7Þ

with kt ¼ 2kn=7 [21]. The derivative of the force with
respect to tij vanishes smoothly at tij ¼ t�ij, and the Coulomb
law is fulfilled. In the following, we use as units of mass,
length, and timem, 2σ1, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð2σ1Þ−1=2k−1n

p
, respectively.

We demonstrate the new type of instability considering a
system with N ¼ 500. We prepare a mechanically equili-
brated amorphous system with packing fraction 0.86 and
friction coefficient μ ¼ 0.5 in a periodic two-dimensional
box. Upon straining we can let the system evolve, solving
according to Eq. (2), with the forces given by Eqs. (6)
and (7), and with the addition of a damping force propor-
tional to the velocities of the particles with a coefficient of
proportionality mη. When η ¼ 0, we are solving a
Newtonian dynamics, which is the one for which we have
theoretical predictions. When the damping timescale η−1

is very small, e.g., of the order of the time that sound
waves need to travel one particle diameter [22], the
dynamics is overdamped. In this limit, even in the
presence of complex eigenvalues, the oscillatory insta-
bility is suppressed, as accelerations can be neglected and
the equations of motion become of first order. In the
following, we use these two limiting dynamics to validate
our theoretical results and then discuss the role of
damping. The numerical solution of the equation of
motion is carried out with LAMMPS [23] while setting
the integration time step 10−5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m−1ð2σ1Þ1=2kn

p
.

An athermal quasistatic shear protocol is now devised
using the Lees-Edwards boundary conditions as follows:
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Starting from the initial stable configuration, the system is
sheared along the horizontal direction (x) by the amount δγ,
varied in the range 10−4–10−8 depending on the precision
needed for the identification of the instability. Thus, each
particle experiences an affine shift along x depending on
their vertical coordinates ryi , i.e., δr

x
i ¼ δγryi . Next, we run

the overdamped dynamics to bring the system back to
mechanical equilibrium where the net force on each particle
is less than 5 × 10−12. After every such step, we diagonalize
the matrix J to find its eigenvalues. At some value of γ, we
find for the first time the birth of a conjugate pair of
complex eigenvalues, as seen in Fig. 1. If we continue to
increase the strain using the same protocol, we see the
emergence of other complex pairs at the expense of real
eigenvalues.
To explore how the system responds to the bifurcation

and validate our theoretical predictions, we then run a
Newtonian dynamics. As an example, we do it here starting
from a configuration with two complex conjugate eigen-
pairs. The dominant eigenpair, which is the one with the
largest growth rate ωi, has ωr ≃ 0.17, ωi ≃ 5.4 × 10−5.
During the Newtonian dynamics, we evaluate the oper-

ator J and its eigenvalues. We find that all the eigenvalues
remain invariant for a long stretch of time, as illustrated in
Fig. 2(a), until a major instability takes place. The system is
expected to follow the prediction of our linear stability
analysis as long as the eigenvalues remain constant. Insight
into the expected particle motion is obtained considering
that real matrices admit a real eigendecomposition of the
kind J ¼ CDC−1 with C, the square matrix whose columns
are the eigenvectors of J. If J is symmetric, then D is the
diagonal matrix containing the eigenvalues. If J is not
symmetric, then D is block diagonal. The blocks are 1 × 1
blocks containing the real eigenvalues, or rotation-scaling
blocks jλjRðθÞ with R 2 × 2 rotation matrix, one block for
each complex eigenvalue pair jλje�iθ. This clarifies that
the complex eigenvalues, i.e., the rotation-scaling blocks,
induce a spiral motion. The emergence of this spiral motion

is illustrated in the Supplemental Material video [20]. The
spiral trajectory of a randomly selected particle is shown in
Fig. 2(b).
Next we consider the mean-square displacementMðtÞ as

a function of time. Denoting Δrxi ðtÞ≡ rxi ðtÞ − rxi ðt ¼ 0Þ,
etc., we define

MðtÞ≡ 1

N

XN
i

(½Δrxi ðtÞ�2 þ ½Δryi ðtÞ�2 þ σ2i ½ΔθiðtÞ�2); ð8Þ

which according to Eq. (5) should behave as MðtÞ ∝
e2ωit sin2ðωrtÞ. Indeed, we see in Fig. 3 that MðtÞ shoots
up in time about 8 orders of magnitude with exponential
rate while following the oscillatory motion. The growth rate
and the oscillatory frequencies match precisely the linear
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FIG. 1. Upon increasing the strain γ two modes with real
eigenvalues λ coalesce at γc (dashed vertical lines), and a pair of
complex conjugate modes gets born. The upper and the lower
halves show the evolution of the real and imaginary components
of these modes.

0 2 4 6

t × 10
-5

-2

0

2

λ i
× 

10
5

-2 -1 0 1 2

Δr
x × 10

6

-4

-2

0

2

4

Δ r
y

× 
10

7

(a) (b)

FIG. 2. (a) Time dependence of the imaginary component of all
1500 eigenvalues of the system, during a Newtonian simulation.
(b) Typical spiral trajectory of a particle in the linear response
regime.
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FIG. 3. (a) The numerically computed mean-square displace-
ment as a function of time. The red line is the predicted
exponential growth from the linear instability a0e2ωit, with a0
being fitted. (b) An enlargement of the growth of the mean-square
displacement. The black line is the exponential oscillatory
instability prediction, a0e2ωit½sinðωrtþ ψÞ�2, with ψ fitted.
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instability prediction. We have also checked that the rota-
tional contribution to MðtÞ behaves as expected [24]. We
remark that, due to numerical noise as well as to the
overdamped dynamics used to prepare the initial configu-
ration, both the unstable mode and few stable modes
contribute to the MSD. Indeed, we observe in Fig. 3(a)
that the instability dominates the response after a short
transient, the first modes contributing to the mean-square
displacement being the high frequency stable ones. At
longer times these stable modes simply contribute a small
constant to the mean square displacement (MSD). This
constant is the small value the MSD of Fig. 3(b) periodi-
cally reaches.
Finally, we focus on the virial component of the shear

stress σxy ¼ −ð1=L2ÞPN
i≠j r

x
ijF

y
ij. During the development

of the instability, the stress change is predicted to evolve
as σxyðtÞ − σxyð0Þ ∝ eωit sinðωrtþ ψÞ. Figure 4(a) shows
that the stress follows the predicted linear instability with
its exponential growth and oscillations until the perturba-
tion self-amplifies enough to induce a plastic instability in
which the system undergoes a microearthquake.
Taken together, Figs. 2(a), 3(a), and 4(a) indicate that

the predictability of the evolution under the effect of the
oscillatory exponential instability terminates at a time
t ≈ 3 × 105. Around that time, the perturbation amplified
enough for the system to switch on a nonlinear response
characterized by the coexistence of a number of unstable
modes, saturating the mean-square displacement and caus-
ing large stress fluctuations. At longer times, these fluc-
tuations cause a series of failure events, leading to a
reduction of shear stress [24].

The oscillatory instability was demonstrated neglecting
any damping. The role of damping is the introduction of a
typical timescale η−1, which competes with the growth rate
of the instabilities ωi. We find that, only if the damping
timescale is smaller than ω−1

i , the instability is suppressed
[24]. Importantly, we show in Supplemental Material
Fig. S1 [20] that the instability is observed in the presence
of dissipation in the interparticle interaction force, with
standard values of the dissipation parameters, explicitly
demonstrating that our findings are relevant to granular
systems.
At this point, it is important to stress that the existence

of the oscillatory instability is not limited to the particular
choice of forces [Eqs. (6) and (7)]. Any reasonable coarse-
grained theory of tangential forces must take into account
the fact that compressed granules will create a larger area of
contact. Accordingly, it is expected that the tangential force
will be a function not only of the θi coordinates but also of
the positional coordinates ri. Consequently, in general, the
forces would not be derivable from a Hamiltonian, and the
corresponding operator J would not be symmetric. There is
therefore a generic possibility to find complex eigenpairs in
this operator in any reasonable coarse-grained theory of
frictional matter. We have checked, for instance, that the
Harmonic model, rather than the Hertzian one discussed in
this Letter, also leads to the reported instabilities. There is
also the possibility that these oscillatory instabilities are not
experimentally observed: this would imply that the coarse-
grained models the whole granular community has been
using in the last ∼50 years lead to unphysical results and
should be revised.
We would like to finally speculate that our results could

be relevant to the physics of earthquakes. A striking
observation in earthquake physics is known as “remote
triggering” [25–27]: an earthquake could trigger a sub-
sequent earthquake on a different fault, even if located far
away. It is clear that faults can “communicate” via seismic
waves propagating through the Earth’s crust. However,
distant faults can only communicate via long wavelength
seismic waves, as short wavelengths are quickly damped
as they propagate. Since long wavelengths act as small
perturbations, as they have a small frequency and hence a
small energy density, it is not clear how they could be able
to induce the failure of a fault. The most popular approach
to rationalize this observation within the geophysical
community, the acoustic fluidization [28,29] mechanism,
suggests that long wavelengths impacting on a fault trigger
short wavelengths within the fault, and that these act by
reducing the confining pressure and promoting failure.
However, a detailed micromechanical investigation of this
process is lacking. Our results might be relevant in this
context as they provide a clear mechanism for the self-
amplification of small perturbations. We of course do not
propose that the system studied above of frictional disks
includes all the rich physics of the Earth and its faults, but it
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during Newtonian dynamics. The instability results in a drop in
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is quite worthwhile to study this mechanism also in the
context of fault dynamics and in other contexts of frictional
granular matter and, more generally, in systems lacking a
Hamiltonian description [30].
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