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In contrast to elementary Majorana particles, emergent Majorana fermions (MFs) in condensed-matter
systems may have electromagnetic multipoles. We developed a general theory of magnetic multipoles for
helical MFs on time-reversal-invariant superconductors. The results show that the multipole response is
governed by crystal symmetry, and that a one-to-one correspondence exists between the symmetry of
Cooper pairs and the representation of magnetic multipoles under crystal symmetry. The latter property
provides a way to identify unconventional pairing symmetry via the magnetic response of helical MFs.
We also find that most helical MFs exhibit a magnetic-dipole response, but those on superconductors with
spin-3=2 electrons may display a magnetic-octupole response in leading order, which uniquely character-
izes high-spin superconductors. Detection of such an octupole response provides direct evidence of high-
spin superconductivity, such as in half-Heusler superconductors.
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Introduction.—The emergence of Majorana fermions
(MFs) in electron systems has led to intense interest in
searching for such exotic new excitations in condensed-
matter physics. Particularly, recent developments have
shown that emergent MFs appear as gapless Andreev
bound states in topological superconductors (TSCs)
[1–14], which provide a potential candidate for fault-
tolerant qubits for topological quantum computation
[15]. The increased interest in topological materials has
led to a proposal of versatile three-dimensional (3D) time-
reversal-invariant (TR-invariant) TSCs, such as supercon-
ducting doped topological insulators (TIs) [16–23] and
Dirac semimetals [24–30], which commonly host helical
MFs forming Kramers pairs on their surfaces.
Emergent MFs share some properties with elementary

Majorana particles [31,32]: Both of them obey Dirac equa-
tions with charge-conjugation symmetry. Furthermore, a pair
of MF zero modes are required to define the fermionic
creation and annihilation operators, from which zero modes
exhibit non-Abelian anyon statistics. However, compared
with elementary Majorana particles, emergent MFs respond
very differently to electric and magnetic fields. On the one
hand, neither electric normagneticmultipoles are possible for
elementaryMFs [33–35]: CPT invariance, where C is charge
conjugation,P is space inversion, and T is time reversal, is a
fundamental symmetry that any relativistic elementary par-
ticles are expected to respect. This symmetry forbids intrinsic
electric and magnetic multipoles for elementary Majorana
particles because they are their own antiparticles under CPT .
On the other hand, in superconductors, fundamental sym-
metry is just charge conjugation (namely, particle-hole (PH)

symmetry), and the emergentMFs are self-conjugate under C.
Therefore, MFs in condensed-matter physics are not subject
to such a strong constraint, and no systematic study on their
electromagnetic multipoles has yet been attempted.
In this Letter, we develop a theory describing the electric

and magnetic response of MFs in superconductors.
For clarity, we focus here on surface helical MFs on 3D
TR-invariant TSCs. A key ingredient specific to emergent
MFs is crystalline symmetry. In analogy with CPT
invariance for elementary MFs, crystal symmetry provides
additional symmetry constraints on electromagnetic struc-
tures of emergent MFs. Considering the constraints, we
establish a response theory for helical MFs in a low-energy
limit, in which the problem reduces to the selection rule for
crystal-symmetry groups. Applying our theory to possible
crystal-symmetry groups, we find that helical MFs can host
magnetic-multipole structures of dipole or octupole orders
as the leading contribution. Additionally, the results predict
a one-to-one correspondence between irreducible repre-
sentations (IRs) of Cooper pairs and magnetic multipoles,
which helps to determine the pairing symmetry experi-
mentally through the magnetic response of MFs.
Particularly, the proposed theory provides a unique way

to identify topological superconductivity of spin-3=2 elec-
trons. Although research interest has recently focused on
high-spin topological superconductivity [29,36–51], little
is known about distinguishing TSCs of spin-3=2 electrons
from those of spin-1=2 electrons. We clarify here that
magnetic responses of helical MFs can unambiguously
distinguish between these two types of SCs because the
magnetic-octupole response is unique to high-spin TSCs.
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To illustrate this, we apply the proposed theory to super-
conducting TIs of ordinary spin-1=2 electrons [17] and
parity-mixed half-Heusler superconductors of spin-3=2
electrons [41,43]. The results of both numerical and
analytical analyses show that only the latter exhibits the
octupole response under the same crystalline symmetry.
Majorana multipole.—Helical MFs are a superconduct-

ing analogue of surface Dirac fermions of TIs and can be
realized in 3D TR-invariant TSCs. From the bulk-boundary
correspondence, the existence of helical MFs is ensured by
the so-called 3D winding number [4,5,52,53]. Whereas the
3D winding number is defined only for fully gapped TSCs,
its parity is well defined even for nodal superconductors
[18]. Provided TR symmetry is maintained, these invariants
are well defined and protect surface helical MFs for both
nodal and nodeless superconductors.
We consider the quantum response of helical MFs when

exposed to external electric or magnetic fields. First, we
notice that electric fields only give moderate responses
from helical MFs: Since electric fields keep TR symmetry,
helical MFs remain gapless so they cannot respond so
much. Conversely, magnetic fields may substantially affect
them. Magnetic fields break TR symmetry, so the 3D
winding number and its parity become invalid. However,
this does not mean that helical MFs are not immune to any
magnetic fields because actual TSCs have their own
crystalline symmetry. Depending on the direction of the
applied magnetic field, TR symmetry may be partially
preserved by combining it with crystalline symmetry. Such
magnetic crystalline symmetry determines the stability of
helical MFs under magnetic fields [54].
As relevant point group operations, we consider

rotations and mirror reflections that are compatible with
the surface. The rotation axis and the mirror plane should
be normal to the surface (see Fig. 1). We consider any
surface-preserving point group G formed by them:
G ¼ C2; C3; C4; C6; Cs; C2v; C3v; C4v; C6v, in addition to
TR symmetry T . (G contains only the unbroken part of
crystalline symmetry, if Cooper pairs spontaneously break
a part of it.) Under a magnetic field, we retain magnetic

twofold rotation or magnetic mirror reflection. Note that the
retained magnetic symmetry is selected by the direction of
an applied magnetic field. Only for a magnetic field normal
(parallel) to the rotation axis (mirror plane), magnetic
twofold rotation (magnetic mirror reflection) is preserved:
The above magnetic field is easily seen to flip under TR,
but it points back to the original when we simultaneously
do a twofold rotation (mirror reflection).
The retained magnetic symmetry enables TSCs to host

an additional topological number that is valid even when
the TSC is exposed to a magnetic field: Let g0 ∈ G be
twofold rotation or mirror reflection that defines the
magnetic symmetry. Combining the magnetic symmetry
with charge conjugation C, one can introduce the magnetic
chiral operator ΓM ∝ g̃0T C, which involves the magnetic
one-dimensional (1D) winding number wM1D [55–59]. If
wM1D for magnetic twofold rotation (magnetic mirror
reflection) is nonzero in the absence of magnetic fields,
then helicalMFs remain gapless even under a magnetic field
normal (parallel) to the rotation axis (mirror plane), provided
the systemmaintains the bulk gap. On the other hand, helical
MFs do not necessarily remain gapless under othermagnetic
fields. This direction dependence results in an anisotropic
magnetic response of helical MFs. Note that wM1D for
magnetic twofold rotation (magnetic mirror reflection) is
defined on the symmetric axis (plane), so it protects the
gapless point (line) of helical MFs at the symmetry axis
(plane) in the surface Brillouin zone (see Fig. 1).
The gapless points or lines are obtained as zero modes

juðaÞ0 i of the Bogoliubov–de Gennes (BdG) equation.
(a ¼ 1, 2 labels the Kramers degeneracy.) The index
theorem for wM1D [60] implies that the stable zero modes

juðaÞ0 i have a common eigenvalue of ΓM, say

ΓMjuðaÞ0 i ¼ juðaÞ0 i: ð1Þ

since zero modes with opposite eigenvalues are easily
gapped in pairs. (This property is rigorously proven for
generic lattice systems [59].) Moreover, from crystalline

symmetry, the zero modes juðaÞ0 i should transform as a
(double-valued) representation under the action of G.
To systematically study the magnetic response of MFs,

we examine possible contributions of MFs to a local
operator ÔðxÞ ¼ ĉ†σðxÞOσ;σ0 ĉσ0 ðxÞ of electrons, where
ĉ†σðxÞ and ĉσðxÞ are the electron operators with internal
degrees of freedom σ such as spin and orbital, andOσ;σ0 is a
Hermitian matrix. The MFs have a nonzero response to
external fields through such a local operator. For instance, if
MFs make a nonzero contribution to the electron-spin
operator ŜiðxÞ ¼ ĉ†σðxÞ½si=2�σ;σ0 ĉσ0 ðxÞ with the Pauli matrix
si, then the MFs show a nonzero magnetic response
through the Zeeman term of electrons.
The contribution of MFs is evaluated as follows: In the

Nambu space with Ψ̂†ðxÞ ¼ ½ĉ†σðxÞ; ĉσðxÞ�, ÔðxÞ is recast

Gapless point

Mirror plane

MF

Gapless line

Rotation axis
MF with
flat band

Surface
BZ

FIG. 1. MFs with gapless point and line in the surface Brillouin
zone (BZ) that are protected by twofold rotation and mirror
reflection, respectively.
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into ÔðxÞ¼ð1=2ÞΨ̂†ðxÞOΨ̂ðxÞ, withO ¼ diagðO;−OTÞ ¼
diagðO;−O�Þ, where we have used the Hermiticity of O.
Then, by performing the mode expansion of the quantum

field Ψ̂ðxÞ ¼ P
a¼1;2 γ̂

ðaÞjuðaÞ0 i þ ðnonzero modesÞ and

using the PH symmetry CΨ̂ ¼ Ψ̂, we obtain the coupling
between ÔðxÞ and the MFs γ̂ðaÞ in the low-energy limit,

ÔMF ¼
1

2

X

a;b¼1;2

γ̂ðbÞγ̂ðaÞhCuðbÞ0 jOjuðaÞ0 i ¼ 1

2
γ̂ð2Þγ̂ð1Þtr½Oρð12Þ�;

ð2Þ

where ρðabÞ ≡ juðaÞ0 ihCuðbÞ0 j − juðbÞ0 ihCuðaÞ0 j and an irrelevant
constant term has been omitted in the last line. A nonzero
ÔMF requires the following two conditions: (i) There

should be zero modes juðaÞ0 i that satisfy Eq. (1). (ii) O
should share the same IR with ρð12Þ under the action of G.
As discussed below, the former condition determines
possible pairing symmetry of Cooper pairs, and the latter
decides possible magnetic responses.
We outline here how the condition (i) specifies the

pairing symmetry of Cooper pairs. First, we note that
the symmetry of Cooper pairs determines the commutation
relations between charge-conjugation and point group
operations. Let us consider the BdG Hamiltonian

HðkÞ ¼
�

EðkÞ ΔðkÞ
Δ�ðkÞ −ETð−kÞ

�
; ð3Þ

where EðkÞ is the Hamiltonian of the normal state and ΔðkÞ
is the gap function of the superconducting state. A point
group G implies that gEðkÞg−1 ¼ EðgkÞ with g ∈ G.
The BdG Hamiltonian retains G if the Cooper pairs have
symmetry gΔðkÞgT ¼ eiθgΔðgkÞ (eiθg is a phase factor) as it

holds that g̃HðkÞg̃−1 ¼ HðgkÞ, where g̃≡ diag½g; e−iθgg��
is the point group operator in the Nambu space. Then, the
charge conjugation C≡ τxK and g̃ obeys the relation
g̃C ¼ eiθgCg̃, where τi is the Pauli matrix in the Nambu
space and K is the complex-conjugation operator. Note that
T always commutes with g̃ (and C), irrespective of the
pairing symmetry. For TR-invariant TSCs, eiθg must be
real, so eiθg ¼ �1. Thus, the gap function should be either
even or odd under g ∈ G, which leads to ½C; g̃� ¼ 0
(fC; g̃g ¼ 0) for g-even (odd) pairing symmetry.
As we discussed before, all zero modes, if they exist,

have a common eigenvalue of ΓM. Combining this with the
result in the above, we can determine the pairing symmetry
that is consistent with the presence of helical MFs: Since a

zero mode juð1Þ0 i and its Kramers partner juð2Þ0 i≡ T juð1Þ0 i
have the same eigenvalue of ΓM, we should have
½T ;ΓM� ¼ 0. This relation determines the phase ambiguity
of the magnetic operator as ΓM ¼ g̃0CT . Then, using C2 ¼
1 and g̃20 ¼ T 2 ¼ −1, we obtain ½g̃0; C� ¼ 0 so as to be
consistent with Γ2

M ¼ 1. This yields that the gap function
should be even under g0. Moreover, any other g̃ ∈ G should
not anticommute with ΓM for the same reason, so by
considering the multiplication law between g̃ and g̃0 as
well, we can establish the commutation or anticommutation
relation between C and g̃ [61]. The obtained set of
commutation or anticommutation relations specifies the
IR of the gap function under G, namely the pairing
symmetry of Cooper pairs. We summarize it for given G
and g̃0 in Table I.
Now we discuss the condition (ii). Since juðaÞ0 i and

jCuðaÞ0 i (a ¼ 1, 2) are double-valued representations of G,
ρð12Þ is their product representation. Thus, using the
standard group theory, we can decompose ρð12Þ into IRs
under G, which determines the representation of O with a

TABLE I. Magnetic multipole for Kramers pair of MFs. From left to right, each column shows two-dimensional point groupsG, IRs of
Δ with wM1D ≠ 0, the basis of Δ, g̃0 associated with ΓM, IRs of O, and the basis of O. Here, Ji are the spin matrices, “−” means the
absence of IRs, and O is the leading order of the magnetic multipole. We omit e−iπJy in the basis of Δ.

G IR of Δ Basis of Δ g̃0 IR of O Basis of O

C2, C4, C6 A k · J C2 A Jz
C3 − − − − −
Cs A kxJz; kxJy; kyJx; kzJx σvðyzÞ A Jx
C2v A2 kzJz C2 A2 Jz

B1 kxJz; kzJx σvðyzÞ B1 Jx
B2 kyJz; kzJy σvðxzÞ B2 Jy

C3v A1 kzðJ3x − JxJyJy − JyJxJy − JyJyJxÞ σvðyzÞ A1 J3x − JxJyJy − JyJxJy − JyJyJx
C4v A2 kzJz C2 A2 Jz
C6v A2 kzJz C2 A2 Jz

B1 kzðJ3x − JxJyJy − JyJxJy − JyJyJxÞ σvðyzÞ B1 J3x − JxJyJy − JyJxJy − JyJyJx
B2 kzðJ3y − JyJxJx − JxJyJx − JxJxJyÞ σdðxzÞ B2 J3y − JyJxJx − JxJyJx − JxJxJy
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nonzero ÔM. (See discussions in S2 of the Supplemental
Material [61].) We find thatO consists of a single IR, which
is summarized in Table I. Remarkably, the IR for O
coincides with the paring symmetry of Cooper pairs. In
other words, helical MFs respond to magnetic fields in
accord with the IR of Cooper pairs. This notable property
allows us to determine the pairing symmetry through the
magnetic response of MFs.
We note an additional constraint ΓMOΓ†

M ¼ O as Eq. (1)
yields ΓMρ

ð12ÞΓ†
M¼ρð12Þ. This constraint implies T OT −1¼

−O as it holds that COC−1 ¼ −O and g̃0Og̃−10 ¼ O.
Therefore, O should be a magnetic operator, as we
expected. In Table I, we provide a representative set of
bases for the gap function and the magnetic operator O.
Majorana octupole in spin-3=2 superconductors.—

Table I reveals that MFs show a magnetic-octupole
response ∝ J3 when the surface has C3v or C6v symmetry.
This unique behavior is intrinsic to high-spin TSCs of
spin-3=2 electrons: In fact, the relevant basis vanishes,
J3x − JxJyJy − JyJxJy − JyJyJx ¼ J3y − JyJxJx − JxJyJx −
JxJxJy ¼ 0 for spin-1=2 electrons (Ji ¼ σi=2).
To confirm this result, we calculate the magnetic

response of MFs in half-Heusler superconductors. In these
compounds [36–41], a strong spin-orbit interaction (SOI)
and high crystal symmetry provide a fourfold degenerate
band at the Γ point, which is well described by spin-3=2
fermions [43]. Additionally, recent experiments have sug-
gested the existence of parity-mixed superconductivity with
line nodes [40,41]. We show here that the parity-mixed
superconductor exhibits a magnetic-octupole response.
Consider the low-energy model with Td symmetry [43]:

HLKðkÞ ¼ αk2 þ β
X

i

k2i J
2
i þ γ

X

i≠j
kikjJiJj

þ δ
X

i

kiðJiþ1JiJiþ1 − Jiþ2JiJiþ2Þ; ð4Þ

where i ¼ x, y, z and iþ 1 ¼ y if i ¼ x, etc., and Ji are the
4 × 4 spin matrices of spin-3=2 fermions. Because inver-
sion symmetry is absent, the Hamiltonian includes the
antisymmetric SOI, which is proportional to δ and causes
spin splitting at the Fermi surface. In their superconducting
states, Cooper pairs form between spin-3=2 electrons, which
allows quintet and septet parings in addition to the
conventional singlet and triplet pairings [43,64,65].
Furthermore, the antisymmetric SOI generally mixes the
parity of the gap function, so the even- and odd-parity
components coexist in the gap function [62,66–69] and
the odd-parity component is aligned with the antisym-
metric SOI [67], providing the spin-septet pairing. Based
on this insight, the gap function is given by the mixture
of spin-singlet and spin-septet components, ΔðkÞ ¼
Δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ η2

p
½η14 þ P

ikiðJiþ1JiJiþ1 − Jiþ2JiJiþ2Þ�e−iπJy ,
even whenwe choose the conventionalA1 state of Td, where

η parametrizes themixing between the spin-singlet and spin-
septet components and 1n is the n × n identity matrix.
The superconducting state hosts six line nodes encircling

the kx, ky, and kz axis, in analogy with other parity-mixed
superconductors [60,70–75]. Here, we focus on the (111)
surface because the magnetic-octupole response requires
C3v symmetry. To verify the existence of helical MFs, we
numerically diagonalize the BdG Hamiltonian with the
surface normal to the [111] direction and find a helical MF
with three flat dispersions (see Fig. S2 [61]), as schemati-
cally depicted in Fig. 2(a). Each flat dispersion lies on the
mirror planes with mirror-reflection symmetries, σ, C†

3σC3,
and ðC†

3Þ2σðC3Þ2, where σ is the mirror reflection with
respect to the ð11̄0Þ plane and C3 is threefold rotation
around the [111] direction. Using these mirror reflections,
we obtain three ΓM and the associated three wM1D, which
protects zero modes on each flat dispersion. In particular,
the three flat dispersions meet at a C3 invariant point, at
which the zero modes become simultaneous eigenstates of
ΓM and C3. To demonstrate magnetic response, we add a
Zeeman magnetic term μB · J in Eq. (4), which leads to an
anisotropic response with C3v symmetry in Fig. 2(b). The
Zeeman magnetic term contributes to the energy gap of the
MFs on the order of 3

ffiffiffi
2

p
μ3B3=32E2

F (See Fig. S3 [61]),
where μ is a coefficient of Zeeman term and EF the Fermi
energy, implying a magnetic-octupole response.
Several remarks are in order. (i) We also examine the

magnetic response of a spin-1=2 TSC with C3v symmetry.
In sharp contrast to the spin-3=2 case, the helical MFs
only show the dipole response (see the magnetic response
of superconducting TIs in Fig. S1 [61]). (ii) The octupole
response also appears in orbital magnetic effects since
the orbital magnetic terms [76–81] also should be the
same IR. (iii) Another high-spin superconductor of spin-
3=2 electrons was recently proposed for antiperovskite
materials with Oh group [28,29]. We obtain a similar

B[111]

0

1

half Heusler (111)(a) (b)

Fermi
surface

C3v symmertric point
k

k

MFLine 
node

B[110]

B[112]

FIG. 2. (a) Surface states of the half-Heusler superconductor
in (111) plane. The red line and red areas indicate helical
MFs with flat dispersion and the line-node-induced Majorana
flat bands. k1 ¼ ð1= ffiffiffi

3
p Þðkx þ ky þ kzÞ, k2 ¼ ð1= ffiffiffi

2
p Þðkx − kyÞ,

and k3 ¼ ð1= ffiffiffi
6

p Þðkx þ ky − 2kzÞ. (b) Energy gap of helical MF
at k2 ¼ k3 ¼ 0 as a function of B under the Zeeman magnetic
field μB · J.
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magnetic-octupole response of MFs on the (111) surface
when its pairing symmetry is A2u of Oh.
Conclusions.—In this Letter, we develop a theory of

Majorana multipoles for 3D TR-invariant TSCs, which
provide novel experimental means to identify bulk pairing
symmetry and high-spin superconductivity. The Majorana
multipoles may be observed through spin-sensitive mea-
surements such as spatially resolved NMR measurements
[82] or the surface tunneling spectroscopy under magnetic
fields [76–80,83].
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